J.C. Broderick & Associates, Inc.

Environmental/Construction Consulting & Testing

September 2, 2016

Mr. Andrew Ward Plainview-Old Bethpage Central School District Administration Building 117 Central Park Road Plainview, New York 11803

Re: Lead in Water Sampling

Plainview-Old Bethpage Central School District

Sites: JFK High School H.B. M

POB Middle School Old Bethpage School Pasadena School

Fern School

H.B. Mattlin Middle School Stratford Elementary School Parkway Elementary School

Jamaica School

JCB#: 16-34415

Dear Mr. Ward:

J. C. Broderick & Associates, Inc. (JCB) was retained by the Plainview-Old Bethpage Central School District to perform an assessment and testing of the drinking water outlets servicing the above referenced school buildings for the presence of lead. The assessment and testing was performed in accordance with the United States Environmental Protection Agency (EPA's) protocols as recommended in their publication 3Ts for Reducing Lead in Drinking Water in Schools.

In summary, the assessment and testing performed indicate that the lead levels of the drinking water outlets servicing the School District currently meet federal guidelines. Sampling was performed at two hundred thirty three (233) drinking outlets, and although lead was initially detected above the action level at only seventeen (17) of these locations, these outlets have been removed from service until further investigation, remediation and/or retesting is completed.

Background

Lead is a toxic metal that can be harmful to human health when ingested or inhaled. Even small doses of lead can be harmful. Unlike most other contaminants, lead is stored in our bones, to be released later into the bloodstream. Even small doses can accumulate and become significant. The groups most vulnerable to lead include fetuses and young children. Drinking water represents one possible means of lead exposure.

Even though water delivered from your community's public water supply must meet Federal and State standards for lead, you may still end up with too much lead in your drinking water because of the plumbing in your facility and because of the building's water use patterns. The physical/chemical interaction that occurs between the water and plumbing is referred to as corrosion. The extent of which corrosion occurs depends on various factors such as the lead content of the building's plumbing and piping system, water velocity, temperature, alkalinity, chlorine levels, the age and condition of plumbing, and the amount of time water is in contact with the plumbing.

www.jcbroderick.com

Re: Lead in Water Sampling

Plainview-Old Bethpage Central School District

Sites: 9 District Buildings

JCB#: 16-34415

Therefore, the critical issue is that even though your public water supplier may send you water that meets all Federal and State public health standards for lead, you may end up with too much lead in your drinking water because of the plumbing in your facility. The only way to be certain that lead is not a problem in your school building is to test various drinking water outlets (i.e., taps, bubblers, coolers, etc.) for the substance. That is why testing the water from your drinking water outlets for lead is so important.

In their revised technical document, <u>3Ts for Reducing Lead in Drinking Water in Schools</u> the EPA outlines a recommended guidance and testing protocol that can be used by schools to determine the source and degree of lead contamination problems in their school buildings and how to remedy such contamination. This strategy was utilized for the assessment and testing of the above referenced school buildings and included the following:

- The Development of a Plumbing Profile;
- The Development of a Sampling Plan;
- Conducting Initial and Follow-Up (Flush) Sampling and Analysis;
- Determination of Interim and Long-Term Remedies;
- Informing the School Community.

Development of a Plumbing Profile

The purpose of developing a plumbing profile is to target potential problems and assess the factors that can contribute to presence and extent of lead contamination in a school building. That is, determine whether the school building may have a widespread problem or a localized concern.

The plumbing profile performed included the answering of a series of questions by an informed school building representative. Typically the questionnaire is completed by the Director of Facilities, the district architect, or the district plumber. The responses to these questions assisted in determining how and where the water entered, flowed through the school building and identifying and prioritizing sampling sites. A sample copy of the plumbing profile questionnaire can be referenced in the attachments to this report.

Due to the age of the school buildings, the number of additions, historic repairs and the lack of specific information pertaining to the lead-content of the plumbing and associated fixtures, comprehensive information was not obtained from the questionnaire identifying if, or where lead-containing plumbing may exist in the school buildings' plumbing system. Therefore a sampling plan was prepared to assess all High Priority Water Outlets or outlets used for drinking or cooking within the school buildings.

Development of a Sampling Plan

An inspection of all functional spaces located within the above referenced school buildings were performed to identify the locations of all high priority water. High priority water outlets are defined by the EPA as:

- Drinking fountains, both bubbler and water cooler style
- Kitchen sinks
- Classroom combination sinks and drinking fountains
- Home economic rooms sinks
- Teacher's lounge sink, nurse's office sink

Re: Lead in Water Sampling Plainview-Old Bethpage Central School District Sites: 9 District Buildings

JCB#: 16-34415

- Classroom sinks in special education classrooms
- Or any other sinks known to be visibly used for consumption (for example, coffee maker or cups are nearby).

The location of these water outlets were demarcated on Site Location Maps which have been prepared for each school building. Copies of these maps can be referenced as an attachment of this report.

Detailed information pertaining to each outlet sampled was recorded on a chain of custody document at the time of the sampling. Unique sample identification numbers were assigned to each sample that correspond the school building's prepared site location map and chain of custody documents. The information recorded on the chain of custody forms included the type of sample collected, date and time of collection, name of the sample collector, location of the sample site and the name of the manufacturer that produced the outlet and the outlets' model number, if applicable and available. The manufacturer and model number information recorded about each of the water coolers servicing the school buildings were also compared to known water coolers that contain lead-lined tanks and or lead containing components.

Drinking water samples were collected for lead analysis utilizing the two-step process for lead contamination identification as described in the above referenced EPA document. This includes the collection of both "Initial 1st Draw" and "Follow-Up Flush" samples subsequent to meeting the recommended stagnation period. All samples were sealed immediately after collection and delivered to a certified laboratory, in laboratory provided coolers, for the analysis of lead content. A copy of the laboratory certifications can be referenced as an attachment to this report.

Initial and Follow-Up Flush Sampling

All "initial 1st draw samples" collected were analyzed for the presence of lead. Reported results were then compared to the established EPA action level of twenty parts per billion (20 ppb). If the reported level of lead in the initial first draw samples were at or below the action level, the water outlet was designated as satisfying the Federal guidelines for lead levels.

If the initial 1st draw sample's lead levels were above the action level, then further investigation and sampling was performed (including the analysis of the follow-up flush sample) in accordance with the EPA's Sampling Strategy Flowchart located in their guidance document.

The following table summarizes the number of drinking water/high priority outlets sampled in each school building and their corresponding results. Detailed information pertaining to each water outlet sampled and their specific laboratory results can be referenced on the chain of custody and laboratory results located in the attachments.

Re: Lead in Water Sampling

Plainview-Old Bethpage Central School District

Sites: 9 District Buildings

JCB#: 16-34415

School Building	Drinking Water Outlets Sampled	Locations which Exceeded EPA Action Level
JFK High School	35	Map Location 6: Hall Fountain by 219 Map Location 8: Hall Fountain by English Office Map Location 15: Faucet in Room 108 Map Location 18: Faucet in Room 109b Map Location 30: Hall Fountain by Gym Map Location 32: Hall Fountain by Custodial Office
Plainview-Old Bethpage Middle School	35	Map Location 24: Hall Fountain by Room 228
H.B. Mattlin Middle School	29	NONE
Stratford Elementary School	71	Map Location 6: Sink in Room 105 Psych Map Location 13: Sink in Room 309 Map Location 14: Hall Fountain Near Room 309 Map Location 19: Sink in Chorus 301/302 Storage Map Location 20: Sink in Chorus 301/302 Storage
Old Bethpage School	16	Map Location 11: Fountain in Room 6
Parkway Elementary School	19	Map Location 8: Fountain in Room 13 Map Location 9: Fountain in Room 11A Map Location 12: Sink in Kitchen
Pasadena School	13	NONE
Jamaica School	13	Map Location 4: Fountain in Playroom 2
Fern School	2	NONE

Interim and Long-Term Remediation

Each of the above referenced outlets which exceeded the action level have been removed from service until further investigation, remediation, and or retesting is completed.

In addition to the locations identified above, seven (7) other locations revealed concentrations of lead between fifteen (15) and twenty (20) parts per billion. Although these concentrations are below the EPA Action Level there is concern that potential upcoming New York State regulations may expand to include this criteria. Therefore, the school district has elected to remove these fixtures from service for further investigation, remediation, and or retesting.

For all active water outlets, it is recommended that the district perform routine control measures including, but not limited to:

- Maintain all drinking water outlets, screens/aerators, and any associated filters
- Develop flushing program for extended non-use
- Use only cold water for food and beverage preparation
- Instruct users to run the water before use or drinking
- Communicate with building occupants the non-potable locations such as faucets in classrooms, bathrooms, and custodial areas indicating that water should not be consumed

Re: Lead in Water Sampling

Plainview-Old Bethpage Central School District

Sites: 9 District Buildings

JCB#: 16-34415

For more information pertaining to these control measures, please reference the EPA's guidance document entitled "Drinking Water Best Management Practices for Schools and Child Care Facilities Served by Municipal Water Systems."

Informing the Public

EPA recommends that schools conducting lead-in-drinking-water sampling programs comply with the public information components of the Lead Contamination Control Act. There are two components:

- 1. Notify relevant parent, teacher, student, and employee organizations of the availability of your sampling program results, and
- 2. Make copies of the sampling results available in your administrative offices "for inspection by the public, including teachers, other school personnel and parents."

Given the health effects of lead, EPA advocates that any school conducting sampling for lead make public any test results. In addition, such schools should identify activities they are pursuing to correct any lead problems.

There are six (6) basic public notification methods recommended by the EPA that should be applied alone, or in combination, to communicate lead-in-drinking-water issues and the meaning of your sampling results. The method(s) that best suits the school districts particular situation should be chosen and can include:

- Press Releases
- Letters/Fliers
- Mailbox or Paycheck Stuffers
- Staff Newsletters
- Presentations, or
- Email and Web Sites.

Advice, suggestions and samples to assist in the public notification process is available from the EPA in their 3Ts for Reducing Lead in Drinking Water in Schools. This publication is available online in the EPA's website.

It should be noted that this sampling was performed in accordance with current guidelines. Should the guidelines change, or legislation dictate other criteria, these results may need to be reevaluated. If you need any further assistance, please feel free to contact our office.

Sincerely,

Edward McGuire

J.C. Broderick & Associates, Inc.

hy will

Attachment 2

Laboratory Analytical Reports

J.C. Broderick & Associates, Inc.

Environmental Consulting & Testing 1775 Expressway Drive North Hauppauge, New York 11788 631.584.5492 fax 631.584.3395

Technical Report

prepared for:

J.C. Broderick
1775 North Express Drive
Hauppauge NY, 11788
Attention: Edward McGuire

Report Date: 05/25/2016

Client Project ID: 16-34415 (JFS) York Project (SDG) No.: 16E0650

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005

New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 22

Report Date: 05/25/2016 Client Project ID: 16-34415 (JFS) York Project (SDG) No.: 16E0650

J.C. Broderick

1775 North Express Drive Hauppauge NY, 11788

Attention: Edward McGuire

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 16, 2016 and listed below. The project was identified as your project: 16-34415 (JFS).

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
16E0650-01	1P	Drinking Water	05/14/2016	05/16/2016
16E0650-03	2P	Drinking Water	05/14/2016	05/16/2016
16E0650-05	3P	Drinking Water	05/14/2016	05/16/2016
16E0650-07	4P	Drinking Water	05/14/2016	05/16/2016
16E0650-09	5P	Drinking Water	05/14/2016	05/16/2016
16E0650-11	6P	Drinking Water	05/14/2016	05/16/2016
16E0650-12	6F	Drinking Water	05/14/2016	05/16/2016
16E0650-13	7 P	Drinking Water	05/14/2016	05/16/2016
16E0650-14	8P	Drinking Water	05/14/2016	05/16/2016
16E0650-15	8F	Drinking Water	05/14/2016	05/16/2016
16E0650-16	9P	Drinking Water	05/14/2016	05/16/2016
16E0650-18	10P	Drinking Water	05/14/2016	05/16/2016
16E0650-19	11P	Drinking Water	05/14/2016	05/16/2016
16E0650-20	12P	Drinking Water	05/14/2016	05/16/2016
16E0650-22	13P	Drinking Water	05/14/2016	05/16/2016
16E0650-24	14P	Drinking Water	05/14/2016	05/16/2016
16E0650-26	15P	Drinking Water	05/14/2016	05/16/2016
16E0650-27	15F	Drinking Water	05/14/2016	05/16/2016
16E0650-28	16P	Drinking Water	05/14/2016	05/16/2016
16E0650-30	17P	Drinking Water	05/14/2016	05/16/2016
16E0650-32	18P	Drinking Water	05/14/2016	05/16/2016
16E0650-33	18F	Drinking Water	05/14/2016	05/16/2016
16E0650-34	19P	Drinking Water	05/14/2016	05/16/2016

York Sample ID	Client Sample ID	<u>Matrix</u>	Date Collected	Date Received
16E0650-35	20P	Drinking Water	05/14/2016	05/16/2016
16E0650-36	21P	Drinking Water	05/14/2016	05/16/2016
16E0650-37	22P	Drinking Water	05/14/2016	05/16/2016
16E0650-38	23P	Drinking Water	05/14/2016	05/16/2016
16E0650-39	23F	Drinking Water	05/14/2016	05/16/2016
16E0650-40	24P	Drinking Water	05/14/2016	05/16/2016
16E0650-42	25P	Drinking Water	05/14/2016	05/16/2016
16E0650-43	26P	Drinking Water	05/14/2016	05/16/2016
16E0650-44	27P	Drinking Water	05/14/2016	05/16/2016
16E0650-46	28P	Drinking Water	05/14/2016	05/16/2016
16E0650-47	29P	Drinking Water	05/14/2016	05/16/2016
16E0650-48	30P	Drinking Water	05/14/2016	05/16/2016
16E0650-49	30F	Drinking Water	05/14/2016	05/16/2016
16E0650-50	31P	Drinking Water	05/14/2016	05/16/2016
16E0650-52	32P	Drinking Water	05/14/2016	05/16/2016
16E0650-53	32 F	Drinking Water	05/14/2016	05/16/2016
16E0650-54	33P	Drinking Water	05/14/2016	05/16/2016
16E0650-56	34P	Drinking Water	05/14/2016	05/16/2016
16E0650-57	35P	Drinking Water	05/14/2016	05/16/2016

General Notes for York Project (SDG) No.: 16E0650

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director ___

05/25/2016

Date:

Client Sample ID: 1P York Sample ID: 16E0650-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:45 am05/16/2016

Lead by EPA 200.8 PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to				Date/Time	Date/Time	
CAS No) .	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference I	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		13.2		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 03:30	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDI	EP,PADEP	

Sample Information

Client Sample ID: 2P York Sample ID: 16E0650-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:48 am05/16/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u> PRES

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference !	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		6.13		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 03:36	ALD
									Certifications:	CTDOH,NE	LAC-NY10854,NJDE	P,PADEP	

Sample Information

Client Sample ID: 3P York Sample ID: 16E0650-05

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:52 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No).	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Mo	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.13		ug/L	0.065	1.00	1	EPA 200.8 Certifications: C	05/20/2016 07:41 FDOH,NELAC-NY10854,NJDI	05/21/2016 03:43 EP,PADEP	ALD

Sample Information

 Client Sample ID:
 4P
 York Sample ID:
 16E0650-07

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0650
 16-34415 (JFS)
 Drinking Water
 May 14, 2016 6:54 am
 05/16/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u> PRES

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 4 of 22

Client Sample ID: 4P York Sample ID: 16E0650-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:54 am05/16/2016

Sample Prepared by Method: EPA 200.8

							Reported to)			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		5.07		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 03:50	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	

Sample Information

Client Sample ID: 5P York Sample ID: 16E0650-09

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:56 am05/16/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		9.27		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 03:57	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDI	PPADEP	

Sample Information

Client Sample ID: 6P York Sample ID: 16E0650-11

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:57 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag Units LOD/MDL LOQ Dilution Reference Method						Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		50.9		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 04:17	ALD
									Certifications:	CTDOH,NE	LAC-NY10854,NJDE	P,PADEP	

Sample Information

Client Sample ID: 6F York Sample ID: 16E0650-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:57 am05/16/2016

Lead by EPA 200.8 Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference 1	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		9.18		ug/L	0.065	1.00	1	EPA 200.8		05/23/2016 11:06	05/24/2016 04:15	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

 Client Sample ID:
 6F
 York Sample ID:
 16E0650-12

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

<u>Client Project ID</u> <u>Matrix</u> <u>Collection Date/Time</u> <u>Date Received</u>

16E0650 16-34415 (JFS) Drinking Water May 14, 2016 6:57 am 05/16/2016

Sample Information

Client Sample ID: 7P York Sample ID: 16E0650-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 6:59 am05/16/2016

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Parameter Result Units LOD/MDL Dilution Reference Method CAS No. Flag LOOPrepared Analyzed Analyst 7439-92-1 Lead 2.60 ug/L EPA 200.8 05/20/2016 07:41 05/21/2016 04:24 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

Sample Information

Client Sample ID: 8P York Sample ID: 16E0650-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:00 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Dilution LOD/MDL CAS No. Parameter Result Flag Units LOO Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/20/2016 07:41 ALD 33.2 ug/L Lead CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

Sample Information

Client Sample ID: 8F York Sample ID: 16E0650-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:00 am05/16/2016

Lead by EPA 200.8 Log-in Notes: Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to)			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference I	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		2.35		ug/L	0.065	1.00	1	EPA 200.8		05/23/2016 11:06	05/24/2016 04:49	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	PPADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<mark>7-0166</mark>

Page 6 of 22

Client Sample ID: 9P York Sample ID: 16E0650-16

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:01 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference N	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		8.91		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:41	05/21/2016 04:38	ALD
									Certifications:	CTDOH,NE	LAC-NY10854,NJDI	EP,PADEP	

Sample Information

<u>Client Sample ID:</u> 10P <u>York Sample ID:</u> 16E0650-18

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:03 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.25		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 05:05	ALD
					Certifications: C7				CTDOH NE	ELAC-NY10854.NJDI	EPPADEP		

Sample Information

<u>Client Sample ID:</u> 11P <u>York Sample ID:</u> 16E0650-19

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:08 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

								•	
18.7	υ	ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:42	05/21/2016 05:39	ALD
	18.7	18.7	18.7 ug/L	18.7 ug/L 0.065	18.7 ug/L 0.065 1.00	18.7 ug/L 0.065 1.00 1	10.7	10.7	10.7

Sample Information

<u>Client Sample ID:</u> 12P <u>York Sample ID:</u> 16E0650-20

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:09 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

					Reported to			Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 7 of 22

Sample Info	rmation
-------------	---------

Chent Sai	mpie ID: 12P						<u> York Sample</u>	<u>ID:</u> 16E	E0650-20	
York Proje	ect (SDG) No.			1	<u>Matrix</u>	Collection Date/Time	<u>Date</u>	Received		
1	6E0650	16-34415 (JFS)				Drinl	king Water	May 14, 2016 7:09 am	0:	5/16/2016
7439-92-1	Lead	11.6	ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:42	05/21/2016 05:46	ALD
7437 72 1	Leau	11.0	ug/L	0.005	1.00		Certifications:	CTDOH,NELAC-NY10854,NJDE		ALD

Sample Information

Client Sample ID: 13P York Sample ID: 16E0650-22 York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:10 am 05/16/2016

Log-in Notes: PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

					Reported to						Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference M	lethod	Prepared	Analyzed	Analyst
7439-92-1	Lead		7.26		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 05:53	ALD
									Cartifications: (TDOU NE	TAC NIVIO954 NIDI	DDADED	

Sample Information

Client Sample ID: 14P **York Sample ID:** 16E0650-24

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 05/16/2016 16-34415 (JFS) 16E0650 Drinking Water May 14, 2016 7:11 am

Log-in Notes: PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No).	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time lethod Prepared	Analyst
7439-92-1	Lead		13.4		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:4	ALD

Sample Information

15P **Client Sample ID: York Sample ID:** 16E0650-26

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:12 am 05/16/2016

Log-in Notes: Sample Notes: Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

Sumpre 1 repui	Reported to Pilution D. C. CASCNI D. C.									Date/Time	Date/Time		
CAS N	0.	Parameter	Result			Prepared	Analyzed	Analyst					
7439-92-1	Lead		27.0		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 06:06	ALD
									Certifications:	CTDOH NE	ELAC-NY10854 NJDE	EPPADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Client Sample ID: York Sample ID: 16E0650-27

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:12 am05/16/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

CAS No		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		ND		ug/L	0.065	1.00	1	EPA 200.8		05/23/2016 11:06	05/24/2016 04:56	ALD
									Certifications:	CTDOH NE	LAC-NY10854 NIDE	PPADEP	

Sample Information

<u>Client Sample ID:</u> 16P <u>York Sample ID:</u> 16E0650-28

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:14 am05/16/2016

<u>Lead by EPA 200.8</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to				Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	lethod	Prepared	Analyzed	Analyst
7439-92-1	Lead		13.0		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 06:13	ALD
									Certifications: 0	CTDOH NE	ELAC-NY10854 NJDF	PPADEP	

Sample Information

<u>Client Sample ID:</u> 17P <u>York Sample ID:</u> 16E0650-30

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:16 am05/16/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

					Reported to						Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		7.16		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 06:20	ALD
									Certifications:	CTDOH NI	ELAC-NY10854 NJDE	PPADEP	

Sample Information

Client Sample ID: 18P York Sample ID: 16E0650-32

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:17 am05/16/2016

<u>Lead by EPA 200.8</u> PRES <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<mark>7-0166</mark>

Page 9 of 22

18P **Client Sample ID:** York Sample ID: 16E0650-32

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received Drinking Water May 14, 2016 7:17 am 05/16/2016

16E0650 16-34415 (JFS)

Sample Prepared by Method: EPA 200.8

					Reported to Dilution D. C. M. (1						Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	1ethod	Prepared	Analyzed	Analyst
7439-92-1	Lead		210		ug/L	0.650	10.0	10	EPA 200.8		05/20/2016 07:42	05/24/2016 06:18	ALD
					Certifications: CTDOH NELAC-NY1				LAC-NY10854 NJDE	EP PADEP			

Sample Information

Client Sample ID: 18F **York Sample ID:** 16E0650-33

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:17 am 05/16/2016

Log-in Notes: Sample Notes: Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

							Reported to)			Date/Time	Date/Time	
CAS No) .	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		393		ug/L	0.650	10.0	10	EPA 200.8		05/23/2016 11:06	05/25/2016 06:09	ALD
									Certifications:	CTDOH,NI	OH,NELAC-NY10854,NJDEP,PADEP		

Sample Information

Client Sample ID: 19P **York Sample ID:** 16E0650-34

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 05/16/2016 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:19 am

Log-in Notes: PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.26		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 06:34	ALD
									Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP				

Sample Information

Client Sample ID: 20P York Sample ID: 16E0650-35

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:20 am 05/16/2016

Lead by EPA 200.8 **Log-in Notes:** PRES **Sample Notes:**

Sample Prepared by Method: EPA 200.8

CAS No.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1 Lead		1.99		ug/L	0.065	1.00	1	EPA 200.8 Certifications:	CTDOH NI	05/20/2016 07:42 ELAC-NY10854,NJDE	05/21/2016 06:41 EPPADEP	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Client Sample ID: York Sample ID: 16E0650-35

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:20 am05/16/2016

Sample Information

<u>Client Sample ID:</u> 21P <u>York Sample ID:</u> 16E0650-36

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:22 am05/16/2016

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Parameter Result Units LOD/MDL Dilution Reference Method CAS No. Flag LOOPrepared Analyzed Analyst 7439-92-1 Lead 2.90 ug/L 05/20/2016 07:42 05/21/2016 07:01 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

Sample Information

Client Sample ID: York Sample ID: 16E0650-37

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:24 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Dilution LOD/MDL CAS No. Parameter Result Flag Units LOO Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/20/2016 07:42 ALD 3.15 ug/L Lead CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

Sample Information

<u>Client Sample ID:</u> 23P <u>York Sample ID:</u> 16E0650-38

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:25 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference 1	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		16.4		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 07:15	ALD
									Certifications:	CTDOH.NI	ELAC-NY10854.NJDI	EP.PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 11 of 22

Client Sample ID: York Sample ID: 16E0650-39

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:25 am05/16/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

CAS No	٠.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		1.72		ug/L	0.065	1.00	1	EPA 200.8	TDOU NE	05/23/2016 11:06	05/24/2016 05:10	ALD

Sample Information

Client Sample ID: 24P York Sample ID: 16E0650-40

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:27 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS N	[a	Parameter	Result	Flag	Units	LOD/MDL	LOO	Dilution	Reference M	Inthad	Prepared	Analyzed	Analyst
CASI	υ.	i ai ainetei	Result	Fiag	Units	LOD/MDL	LOQ	Dilution	Keierence w	ietiiou	rrepareu	Anatyzeu	Analyst
7439-92-1	Lead		8.30		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 07:22	ALD
									Certifications: (CTDOH NE	LAC-NY10854 NJDF	PPADEP	

Reported to

Sample Information

<u>Client Sample ID:</u> 25P <u>York Sample ID:</u> 16E0650-42

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:29 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS N	[0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		8.06		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:42	05/21/2016 07:28	ALD
				Certifications: CTDOH NELAC-NY10854 NJ						DEPPADEP		

Sample Information

Client Sample ID: 26P York Sample ID: 16E0650-43

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:30 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

					1	Reported to)		Date/Time	Date/Time	
AS No.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Data/Time

Doto/Time

Samn	le	Inform	ation
~~~		*****	

Client Sai	mple ID: 26P							York Sample	<u>: ID:</u> 161	E0650-43
York Proje	ect (SDG) No.	Client Project ID	<u>)</u>			<u>N</u>	<u>Matrix</u>	Collection Date/Time	<u>Date</u>	Received
1	6E0650	16-34415 (JFS)				Drink	ring Water	May 14, 2016 7:30 am	ı 0	5/16/2016
7439-92-1	Lead	3.32	ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:42	05/21/2016 07:35	ALD
7437 72 1	Leau	3.32	ug/L	0.005	1.00	•	Certifications:	CTDOH,NELAC-NY10854,NJDE		ALD

 Client Sample ID:
 27P
 York Sample ID:
 16E0650-44

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0650
 16-34415 (JFS)
 Drinking Water
 May 14, 2016 7:32 am
 05/16/2016

#### <u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS N	lo.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference 1	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		11.4		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 07:42	ALD
									Certifications:	CTDOH NE	ELAC-NY10854 NJDF	EP PADEP	

#### **Sample Information**

Client Sample ID: 28P

York Sample ID: 16E0650-46

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:34 am05/16/2016

#### Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.44		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:42	05/21/2016 07:49	ALD

#### **Sample Information**

 Client Sample ID:
 29P
 York Sample ID:
 16E0650-47

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0650
 16-34415 (JFS)
 Drinking Water
 May 14, 2016 7:36 am
 05/16/2016

## Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	) <b>.</b>	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.00		ug/L	0.065	1.00	1	EPA 200.8 Certifications:	CTDOH,NI	05/20/2016 07:42 ELAC-NY10854,NJDE	05/21/2016 07:56 EP,PADEP	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166



30P **Client Sample ID:** York Sample ID: 16E0650-48

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:38 am 05/16/2016

**Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	٠.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Iethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		36.1		ug/L	0.065	1.00	1	EPA 200.8	TDOU NE	05/20/2016 07:43	05/21/2016 08:37	ALD

#### **Sample Information**

**30F Client Sample ID: York Sample ID:** 16E0650-49

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:40 am 05/16/2016

#### **Log-in Notes: Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		41.3		ug/L	0.065	1.00	1	EPA 200.8		05/23/2016 11:06	05/24/2016 05:17	ALD
									Certifications:	CTDOH.NE	ELAC-NY10854,NJDE	EP.PADEP	

#### **Sample Information**

31P York Sample ID: **Client Sample ID:** 16E0650-50

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received Drinking Water 16-34415 (JFS) 16E0650 May 14, 2016 7:41 am 05/16/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS N	[0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		11.3		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:43	05/21/2016 08:57	ALD
									Certifications: (	TDOH NELAC-NY10854 NJ	DEPPADEP	

## **Sample Information**

32P **Client Sample ID: York Sample ID:** 16E0650-52

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:42 am 05/16/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

					Reported to	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 14 of 22



Sample Info	ormation
-------------	----------

**Client Sample ID:** 32P York Sample ID: 16E0650-52 Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 16E0650 16-34415 (JFS) Drinking Water May 14, 2016 7:42 am 05/16/2016 7439-92-1 406 ug/L 0.650 10.0 EPA 200.8 ALD Lead

Certifications:

CTDOH,NELAC-NY10854,NJDEP,PADEP

**Sample Information** 

<u>Client Sample ID:</u> 32F <u>York Sample ID:</u> 16E0650-53

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:42 am05/16/2016

Lead by EPA 200.8 <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference M	<b>1ethod</b>	Prepared	Analyzed	Analyst
7439-92-1	Lead		15.7		ug/L	0.065	1.00	1	EPA 200.8		05/23/2016 11:06	05/24/2016 05:24	ALD
									Certifications:	CTDOH NE	LAC-NY10854 NJDE	EP PADEP	

#### **Sample Information**

<u>Client Sample ID:</u> 33P <u>York Sample ID:</u> 16E0650-54

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:46 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.45		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:43	05/21/2016 09:11	ALD

#### **Sample Information**

<u>Client Sample ID:</u> 34P <u>York Sample ID:</u> 16E0650-56

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:48 am05/16/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to				Date/Time	Date/Time	
CAS No	D.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		3.62		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:43	05/21/2016 09:18	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 15 of 22



<u>Client Sample ID:</u> 35P <u>York Sample ID:</u> 16E0650-57

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E065016-34415 (JFS)Drinking WaterMay 14, 2016 7:50 am05/16/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u> PRES

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference Me	Date/Time thod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.15		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:43	05/21/2016 09:25	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 16 of 22



#### **Notes and Definitions**

PRES	Sample was received with no preservative and was preserved upon receipt at the laboratory. If for metals, the sample was allowed to sit for 18-24 hours before analysis.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably

MDL METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

600 and 200 series methods.

Reported to This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

.C. Broderick Associates 1775 Expressway Dr. N. lauppauge, NY 11788 Contact: Ed McGuire emcguire@jcbroderick.com Lead In Water Chain of Custody Form

JCB#: 16-34415 (JFS)

Page of 5
Date: 5/14/16
16 E 0 6 5 0

Map For atton	Building Code	Floor	Functional Space Code	IN/BY	AHERAID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
	JFS	2	HA	6	3064	DU	P	J	19	5/14	0645	
	JFS	ス	HA	61	3064	DW	F	1	IF	5/14	0645	
12.	JFS	2	HA	by	3075	DY	ρ	)	28	5/14	0648	
1.72	JFS	2	HA	67	3075	DW	F		2F	5/14	0648	
3	JFS	2	CR	7	3052	CF	r	1	3 P	5/14	0652	
學學	JFS	Z	CR	1~	3052	CF	F	1.	3F	5/14	653	
19	JFS	2_	HA	by	3003	DW	ρ	1	YP	5/14	6:54	
	JFS	2	HA	by	<i>300</i> 3	DW	<i>F</i>	1	4F	5/14	654	
5	JFS	2	HA	Ś _V	3001	DW	P	1	59	5/14	6:56	
	JFS	2	HA	5/	3001	DV	F	(	5 F	5/14	6:56	
$\mathcal{L}_{\mathcal{A}}$	JFS	2	HA	by	3032	DW	· P	l	61	5/14	667	
6.	JFS	2	HA	6/	3032	DW	F		6-	5/14	6.57	

Cher		Bethpase CSD				Laboratory Name:	York	Λ	Date	Time	Method Of Analysis
	ling Name and Address	50 Kennedy Dr	eve Plain	11800		Analyzed By		Murall	\$126-512	18:00	
1J	hn F. Kennedy	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	W100		QC By		·	l	j	Lead
1	•	Nr 11803			•						1 000
	H.S.					instructions to the i	aberatory		_		
	ier's Name:	Kenn Manden	lyer_			Turneround Time:	Standa	4	]		
a	dec's Sirneture:	49.				Email Report to:		emcguire@jcbroderick.com	]		
ge	less Edinatures	Received By:	Datei	Time:		Special Instructions		Analyze Flush Samples (F) O	NLY when	Primary Sar	nple exceeds 20pbb
1 8	POU	akballa	SING	130pm							
읔		J. Belle	5/16/1	4 7837	5.4	°C					
		<u> </u>	<u> </u>	1,	' '						
123											

C. Broderick Associates
775 Expressway Dr. N.
lauppauge, NY 11788
contact: Ed McGuire
mcguire@jcbroderick.com

Lead In Water
Chain of Custody Form

JCB#: 16-34415 (JFS)

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	JFS	2	HA	by	RM296	WC	ρ	١	79	5/14	6:59	
8	JFS	1	HA	6y	2/49	DU	P	1.	81	5/14	23	
8	JFS	1	HT	6/	2149	DW	F	1	8F	5/14	700	
9	JFS	j	HA	61	2231	DW	P		99	\$14	7:01	
9	JFS	1	HA	61	2231	DV	F	1	9F	5/14	7:01	·
10	JF-S	1	HA	bu	RM195A	WL	P	•	IOP	5/14	703	
1/)	JFS	1	HA	61	2164	WC	P	Į	11P	5/14	7:08	
, 1Z	JFS		HA	64	2140	DW	P		129	5/14	709	
70	JFS	1	HA	64	2/40	DW	F	1	12F	5/14	7:09	
<b>J</b> 3	JFS		HA	by	2246	04	ρ	١	13P	5/14	7:10	
B	JFS		HA	5/	2246	DW	F		134	5/14	フィー	
美洲生	JFS	1	CR	in	2211	CF	$\rho$	1	149	5/14	>:11	

CR.		Bothpage CSD			Laboratory Name: Yo	art a	Date Tim	e Method Of Analysis
	ding Name and Address	so kennedy DA	ve Plannerw		Analyzed By	Mundell	5720-575 8	(W)
15	ahr F. Kennedy	10 none / 0.1	, _ j,	Ì	QC By			Lead
ľ	// m	NY 11803		1				
raye	1/2				instructions to the Labor		_	
20	ler's Rems:	Kon Mada	بـــــ	]	Turneround Time: -	tandard	}	
		Ken		]	Emeil Report to:	emcguire@jcbroderick.com	1	
- u	ntibod by	Received By:	Date: Time:	]	Special textractions:	Analyze Flush Samples (F) Of	NLY when Prim	ary Sample exceeds 20pbb
		KGGLA	566 1800r	J	<i>t</i> ~ .			
77		1. 11. Lu	5/16/16 183	5.4	, · c	•		
Πi	3		7 /	1 '				

.C. Broderick Associates 775 Expressway Dr. N. lauppauge, NY 11788 ontact: Ed McGuire mcguire@jcbroderick.com

Lead In Water **Chain of Custody Form** 

JCB#: 16-344/5(JFS)

Page of 5

Date: 5/14/16

16 E 0 6 5 0

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
i jy	JFS		CR	٧.	2211	CF	F	١	14F	5/14	フリ	
<i>\b'</i> -	7FJ	\	CR	15	2211	CF	ρ	***************************************	159	5/14	7:12	
¥.	47	, plane	CR	15	2211	CF	F	į	15F	5/14	7:12	
16	JFS		CR	5.	2211	CF	ρ	(	169	5/14	7114	
16	ZFS		CR	15	2211	CF	F	1	16F	5/14	7:14	
17	242	}	CR	is	2211	CF	ρ	Į	179	5/14	716	
17	JFS		CR	۲.	2211	CF	F	1	17F	5/14	7:16	
18	JES		FA	15	2209A	CF	P		18 P	5/14	フ:/フ	
17	JFS		FA	1	2209A	CF	F	· committee of	188	5/14	カバフ	
19	JFS	1	CA	in	2207	WC	P	Į	19P	5/14	7:19	
20	JFS	)	CA	in	2199	MC	P	1	20P	5/14	7:20	
2/	JFS	1	CA	i~	2179	WC	ρ	1	ZIP	5/14	722	

Clien	= Pkinnew -01	d Bethpage C	<u> </u>			Laboratory Hame:	Kont	^	^	Date	Time	Method Of Analysis
	ing Name and Address	C- Kanada	Drive			Analyzed By QC By		anne	<i></i>	5120512	2:00	1 - 1
1	hn F. Kennedy	Physical NY	1803			(40.07			<del></del>		<b>.</b>	Lead
Pa						Instructions to the L				<b>-</b>		•
age	er's Name; er's Signature:	Kann Monde				Turnaround Time: Email Report to:	Stade-d	emcguire@jcbrod	erick.com	-		
П.	relished Dv:	Received By:	Outer	Time:		Special Instructions:				NLY when F	Primary Sar	mple exceeds 20pbb
Hg	100	a K-loggla	5-1-16	130em	-11	· c					······································	
22		de there	5/14/16	12.37	3.7							

.C. Broderick Associates 1775 Expressway Dr. N. Hauppauge, NY 11788 Contact: Ed McGuire !mcguire@jcbroderick.com

Lead In Water Chain of Custody Form

JCB#: 16-34415

16E0650

Viap Location	Building Code	Floor	Functional Space Code	IN/BY	AHERAID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
2,2	JFS	1	CA	1~	2199	WC	ρ	ı	27	5/14	7124	
23	IFS	1	Ki	in	2204	KC	ρ	}	23P	5/14	7;25	
-23	JFS	1	Ki	>>	2204	KC	F	ı	Z3F	5/14	7,25	
24	JFS	1	Ki	in	2203	KC	ρ	1	240	5/14	プスフ	
: 2 <u>.</u> 4	JFS	1	Ki	ĵ۸	2203	KC	F	1	24F	5/14	7.27	
25	JFS	1	_HA	<i>by</i>	2199	WC	ρ	1	250	5/14	7:29	
:Z\$	JFS	1	05	1.5	2093	WC	Þ	1	ZSP	5/14	7:30	
27	JFS		HA	in	2096	DW	ρ		278	5/14	ブラス	
2/	TFS	1	_HA _	61	2096	DW	F	J	27F	5/14	7:32	
45.	JF5	1	NO	171	2017	IM	P	1	288	5/14	7134	
<b>4</b> 1	JFS	/	44	6y	2109	WC	ρ		29P	5/14	7:36	· · · · · · · · · · · · · · · · · · ·
	TFS	/	HA	61	2109	DW	P	l	300	5/14	7:38	

Chant		+ Bethpage CS	٠ <u>٧</u>		Laboratory Name: Yark	^	Date	Time	Method Of Analysis
Jol	_ 1 ) / Ma A // // /	50 Kennedy Dr	the Plasarraw		Analysed By QC By	(limat /h	S120516		Lead
Pa	A.S. ca Names ca Signatures	NY 11803	1500	-	Instructions to the Laboratory Turneround Time: Standard Email Report to:		1		
ge 21 of	teles of the second	1. 22.	Date: Bine:   1300M	1	Special instructions:	emcguire@icbroderick.com Analyze Flush Samples (F) O	NLY when f	Primary San	nple exceeds 20pbb

.C. Broderick Associates 1775 Expressway Dr. N. Hauppauge, NY 11788 Contact: Ed McGuire emcguire@jcbroderick.com

Lead In Water Chain of Custody Form

JCB#: 16-34415 (JFS)

16 E0650

Map Location	Building Code	Floor	Functional Space	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
30.	JFS	1	HA	by	2109	DW	F	J	30F	5/14	7:40	
3/-	JFS	1	NO	in	2/01	NS	f	}	31P	5/IU	7:41	
34	JFS	)	No	j~	2101	NS	F	}	31F	5/14	7,41	
32	JH	)	HA	by	2014	DW	ρ		32P	5/14	7)42	
43.4	JFS	ı	44	6 _V	2014	02	7	1	32F	5/14	フジィ	
33	JFS	)	HA	6×	2014	DV	ρ	1	330	5/14	7,46	
33	JES	,	HA	51	2014	DW	F	1	33F	5/14	7:46	
34	JF5	1	67	in	1000	WC	P	1	34 <i>P</i>	5/14	7:48	
135	TT	1	HA	by	2182	DW	ρ	-	35 P	5/14	7:50	
35	JF-5	)	HA	by	2182	DU	F	1	35F	5/14	750	
							•					
						ν,						

CRe		<u> </u>	CSD	Laboratory Name: Yes	-	Date	Time 1	Method Of Analysis
	ohn F. Kennely	50 kinedy A D		Analyzed By QC By	flund the	Shows	₹ CO'A	-end
- 490 - 490	w's Name:	Kan Maden		Instructions to the Laboratory Turneround Time: 5/c./c. Email Report to:	emcguire@jcbroderick.com	7	<b>L</b>	
	ithed by:	A VBalls	Date: 11me: 1700m. 5/16/16 18:37	Special Instructions:	Analyze Flush Samples (F) O	NLY when P	rimary Samp	ole exceeds 20pbb



Monday, May 23, 2016

Attn: Mr Ed McGuire J C Broderick & Associates, Inc. 1775 Express Dr N Hauppauge, NY 11788

Project ID: 16-34415

Sample ID#s: BN33450, BN33452, BN33454, BN33456 - BN33457, BN33459, BN33461,

BN33463, BN33465, BN33467, BN33469, BN33471, BN33473, BN33475, BN33477 - BN33478, BN33480, BN33482, BN33484, BN33486, BN33488, BN33490, BN33492, BN33494 - BN33496, BN33498, BN33500 - BN33501, BN33503, BN33505 - BN33506, BN33508, BN33510, BN33512, BN33514

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007
ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	<u>Custody Information</u> <u>Date</u>			
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33450

Project ID: 16-34415

Client ID: 1 PBM 2 KI IN 2053 KC 1P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 1 of 36 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: RD 6:25 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

_aboratory Data SDG ID: GBN33450

Phoenix ID: BN33452

Project ID: 16-34415

Client ID: 2 PBM 2 KI IN 2053 KC 2P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 36 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Ti</u>		
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:26	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "By" below			

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33454

Project ID: 16-34415

Client ID: 3PBM 2 KI IN 2053 KC 3P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

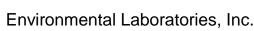
#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.


Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 36 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>			
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:29		
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12		
Rush Request:	Standard	Analyzed by:	see "By" below				

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33456

Project ID: 16-34415

Client ID: 4 PBM 2 CA IN 2051 WC 4P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK AG/TH/I	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 36 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>		
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:33	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "By" below			

Rush Request. Standard Analyzed by See By Delo

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33457

Project ID: 16-34415

Client ID: 5 PBM 2 CR IN 2067 CF 5P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 5 of 36 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: RD 6:34 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33459

Project ID: 16-34415

Client ID: 6 PBM 2 CR IN 2067 CF 6P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH/CB/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 36 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:35
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request. Standard Analyzed by. See By De

**Laboratory Data** 

SDG ID: GBN33450

Phoenix ID: BN33461

Project ID: 16-34415

Client ID: 7 PBM 2 CR IN 2067 CF 7P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 7 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#: Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33463

Project ID: 16-34415

Client ID: 8PBM 2 CR IN 2067 CF 8P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33465

Project ID: 16-34415

Client ID: 9 PBM 2 CR IN 2070 CF 9P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33467

Project ID: 16-34415

Client ID: 10 PBM 2 CR IN 2070 CF 10P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33469

Project ID: 16-34415

Client ID: 11 PBM 2 CR IN 2070 CF 11P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 11 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33471

Project ID: 16-34415

Client ID: 12 PBM 2 CR IN 2070 CF 12P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 12 of 36 Ver 1







SDG ID: GBN33450

Phoenix ID: BN33473

## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poqueet:	Standard	Analyzed by:	aco "Py" bolow		

Rush Request: Standard Analyzed by: see "By" below

Client ID: 13 PBM 2 FA IN 2072 CF 13P

16-34415

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/B	E200.5 FE200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 13 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33475

Project ID: 16-34415

Client ID: 14 PBM 2 HA BY 2047 DW 14P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	EK AG/TH/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 14 of 36 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: RD 6:24 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

SDG ID: GBN33450

Phoenix ID: BN33477

16-34415 Project ID:

15 PBM 2 CF IN 2091 IM 15P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH/CB/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Information Date		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33478

Project ID: 16-34415

Client ID: 16 PBM 2 LR IN 2077 DW 16P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH/CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 16 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33480

Project ID: 16-34415

Client ID: 17 PBM 2 LR IN 2102 DW 17P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 17 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#: Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33482

Project ID: 16-34415

Client ID: 18 PBM 2 HA BY 2170 DW 18P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 36 Ver 1







SDG ID: GBN33450 Phoenix ID: BN33484

## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation	<u>Custody Information</u> <u>Date</u>		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID:

Client ID: 19 PBM 2 POOL IN 2118 DEW 19P

16-34415

RL/ DW Sec Parameter Result **PQL** DIL Units **MCL** Goal Date/Time Βv Reference Lead 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH\CB/BFE200.5/E200.7 **Total Metal Digestion** 

.aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 19 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Information Date		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

SDG ID: GBN33450

Phoenix ID: BN33486

Project ID: 16-34415

Client ID: 20 PBM 2 HA BY 2191 DW 20P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 FE200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 20 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	<u>Custody Information</u>			<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request. Standard Analyzed by. See By Delow

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33488

Project ID: 16-34415

Client ID: 21 PBM 2 HA BY 2208 21P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 21 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>		
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "By" below			

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33490

Project ID: 16-34415

Client ID: 22 PBM 2 HA BY 2153 DW 22P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 22 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#: Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33492

Project ID: 16-34415

Client ID: 23 PBM 2 HA BY 2217 DW 23P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 23 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#:

_aboratory Data SDG ID: GBN33450

Phoenix ID: BN33494

Project ID: 16-34415

Client ID: 24 PBM 2 HA BY 2130 DW 24P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.162	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	TH\CB/E	sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 24 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u> <u>Date</u>		<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#: Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33495

Project ID: 16-34415

Client ID: 24 PBM 2 HA BY 2130 DW 24F

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.052	0.001	1	mg/L	0.015		05/20/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/18/16	AG/TH/E	sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 25 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ample Information		<u>ole Information</u> <u>Custody Information</u>		<u>Custody Information</u> <u>Date</u>			
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "By" below					

Rush Request. Standard Analyzed by See By Delow

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33496

Project ID: 16-34415

Client ID: 25 PBM 1 HA BY 1002 DW 25P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 26 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	Sample Information		Custody Information Date			
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "Ry" helow			

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33498

Project ID: 16-34415

Client ID: 26 PBM 2 OF IN 2027 KF 26P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 27 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Custody Infor		<u>nation</u>	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33500

Project ID: 16-34415

Client ID: 27 PBM 2 OF IN 2025 BW 27P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 28 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Custody Infor		<u>nation</u>	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33450

Phoenix ID: BN33501

Project ID: 16-34415

Client ID: 28 PBM 2 NO IN 2015 NS 28P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 29 of 36 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: RD 6:24 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33503

Project ID: 16-34415

Client ID: 29 PBM 1 OF IN 1051 CF 29P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH\CB/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 30 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Informa		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

aboratory Data SDG ID: GBN33450

Phoenix ID: BN33505

Project ID: 16-34415

Client ID: 30 PBM 1 OF IN 1051 BW 30P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/B	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 31 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	mple Information Custody Informa		<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request. Standard Analyzed by See By Delot

<u>Laboratory Data</u>

SDG ID: GBN33450

Phoenix ID: BN33506

Project ID: 16-34415

Client ID: 31 PBM 1 OF IN 1033B CF 31P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 32 of 36 Ver 1







SDG ID: GBN33450 Phoenix ID: BN33508

## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>		
Matrix:	DRINKING WATER	Collected by:	RD	05/13/16	6:24	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "Bv" below			

**Laboratory Data** 

P.O.#:

Project ID:

32 PBM 3 HA BY 3023 DW 32P Client ID:

16-34415

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH\CB/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 33 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/13/16	7:28
Location Code:	JC-BROD	Received by:	LB	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request: Standard

P.O.#:

SDG ID: GBN33450 aboratory Data

Phoenix ID: BN33510

16-34415 PBM Project ID:

Client ID: 33 PBM 3 HA BY 3021 DW 33P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 34 of 36 Ver 1







## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ition</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/13/16	7:30
Location Code:	JC-BROD	Received by:	LB	05/17/16	15:12

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data SDG ID: GBN33450

Phoenix ID: BN33512

Project ID: 16-34415 PBM

Client ID: 34 PBM 3 HA BY 3034 DW 34P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK TH\CB/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 35 of 36 Ver 1







SDG ID: GBN33450

Phoenix ID: BN33514

## **Analysis Report**

May 23, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Informat	<u>tion</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/13/16	7:32
Location Code:	JC-BROD	Received by:	LB	05/17/16	15:12
Duck Deguest	Ctondord	A a l a .d . b	"D "   -   -		

Rush Request: Standard Analyzed by: see "By" below

16-34415 PBM 35 PBM 3 HA BY 3058 DW 35P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units **MCL** Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH\CB/BFE200.5/E200.7 **Total Metal Digestion** 

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

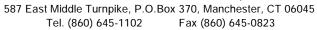
Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director


May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 36 of 36 Ver 1



## Environmental Laboratories, Inc.





SDG I.D.: GBN33450

# QA/QC Report

May 23, 2016

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

## QA/QC Data

May 25, 2010						<u> </u>				ו טעכ	.D C	יספווספ	+30
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
			DNIGGAE										
QA/QC Batch 345928A (mg/L), (BN33473, BN33477, BN33478)	2C San	npie ivo:	BN3345	9 (BN33	459, Bi	N33461	I, BN334	163, BN	33465,	BN334	67, BN	133469,	BN33471,
ICP Metals - Aqueous													
Lead	BRL	0.001				95.2			94.3			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 345932 (mg/L), Qo BN33494, BN33496, BN33498)	C Samp	ole No: E	3N33480	(BN334	80, BN	33482,	BN3348	84, BN3	3486, E	3N3348	8, BN3	3490, B	N33492,
ICP Metals - Aqueous													
Lead	BRL	0.001	0.002	0.002	NC	91.6			93.0			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 345932A (mg/L), (BN33512, BN33514)	ΩC San	nple No:	BN3350	0 (BN33	500, B <b>i</b>	N33501	, BN335	503, BN	33505,	BN335	06, BN	133508,	BN33510,
ICP Metals - Aqueous													
Lead	BRL	0.001				91.6			92.1			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 346074A (mg/L), (	2C San	nple No:	BN3356	5 (BN33	495)								
ICP Metals - Aqueous													
Lead	BRL	0.001				96.5			95.7			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 345924A (mg/L), (	2C San	nple No:	BN3415	5 (BN33	452, Bľ	N33454	I, BN334	156, BN	33457)	)			
ICP Metals - Aqueous													
Lead	BRL	0.001				99.1			104			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 345924 (mg/L), Q	C Samp	ole No: E	3N34183	(BN334	50)								
ICP Metals - Aqueous													
Lead	BRL	0.001	0.002	0.002	NC	99.1			96.1			85 - 115	20
Comment:													
Additional: LCS acceptance range	is 85-11	5% MS a	cceptance	e range 7	5-125%								
QA/QC Batch 345923A (mg/L), (	QC San	nple No:	BN3419	3 (BN33	475)								
ICP Metals - Aqueous													
Lead	BRL	0.001				99.0			97.6			85 - 115	20

## QA/QC Data

SDG I.D.: GBN33450

% RPD % Blk Dup Dup LCS LCSD LCS MS MSD Sample MS Rec Blank RL Result Result RPD % % RPD % % RPD Limits Limits Parameter QA/QC Batch 346378 (mg/L), QC Sample No: BN35808 (BN33497) ICP Metals - Aqueous 91.7 Lead BRL 0.001 <0.001 <0.001 NC 90.9 85 - 115 20 Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director May 23, 2016 Monday, May 23, 2016 Criteria: None

State: NY

# Sample Criteria Exceedences Report

**GBN33450 - JC-BROD** 

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Units
BN33494	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MC	Ls 0.162	0.001	0.015	0.001	mg/L
BN33494	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.162	0.001	0.015	0.015	mg/L
BN33495	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MC	Ls 0.052	0.001	0.015	0.001	mg/L
BN33495	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.052	0.001	0.015	0.015	ma/l

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1



#### **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



## **Analysis Comments**

May 23, 2016 SDG I.D.: GBN33450

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

# nelace

# **NY Temperature Narration**

May 23, 2016

SDG I.D.: GBN33450

The samples in this delivery group were received at  $20^{\circ}$ C. (Note acceptance criteria is above freezing up to  $6^{\circ}$ C)

J.C. Broderick Associates 1775 Expressway Dr. N. Hauppauge, NY 11788 Contact: Ed McGuire emcguire@jcbroderick.com

#### Lead In Water **Chain of Custody Form**

JCB#: 16-34415 (PBM)

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
1	PBY	Ż	KI	in	7053	KC	P	1	10	5/13	6:24	33450
1	PBM	Z	· KI	19	zo5_3	KC	F	1	IF	5/13	( 21	33451
	PBM	2	KI	in	2053	KC	P	1	20	5/13		33452
2	PBM	2	KI	in	2053	KC	F		2F	5/13	1.27	33453
3	BH	Z	KI	in	2053	KC	P	1	3P	5/13	1 - 1	33454
3	PBM	2	KI	in	2053	KC	F		3F	5/13		33455
4	PBM	2	.CA	in	2051	WC	ρ	1	4 P	5/13	6:29	33456
_5	PBIY	2	CR	in	2067	CF	F	)	5P.	3/13	1.30	3345-
5	DBH	2	CR	in	2067	CF	ρ	1	5F	5/13		33458
6	PBM	2	CR_	in	2067	F	F	.1	6P	5/13	A 11	33459
6	PBM	2	CR	ĺη	2067	4	P	1	6F	5/13	6:34	33460
7	PBIY	2	CR	in	2067	CF	F	1	78	5/13	6:35	33461

Client: Plainview Building Name and Address	Old Beth POB Midd	le Schoo	. /		Laboratory Name: Danalyzed By QC By	henix	Date	Пте	Method Of Analysis
<u>Sampler's Name;</u> Sampler's Signature;	Plainview Ro: Das	NY 1180			Instructions to the Laborat Turnaround Time: 54	tory  -andard  -andard  -amcguire@jcbroderick.com			lead
Relinquished By:	Received By:	Date:	Time:		Special Instructions:	Analyze Flush Samples		n Primary Sa	mpie exceeds 20pbb
The state of the s	Charles	mo 5/1	111/-	10-1-	<b>-</b>				

J.C. Broderick Associates 1775 Expressway Dr. N. Hauppauge, NY 11788 **Contact: Ed McGuire** emcguire@jcbroderick.com

#### Lead In Water **Chain of Custody Form**

JCB#: 16-34415 (PBH)

200 Ne

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	PBM	2	CR	111	2067	CF'	, F	1	フド	5/13	6:35	33462
8	PBM	Z	, CR	in	2067	CF	ρ	1	80	5/12	4 . 4	33463
8	PBIY	2	CR	in	2067	CF	F	1	8F	5/12	6:36	33464
9	PBM	2	CR	in	2070	C#	. 0	1	9 P	5/12	6:40	33465
9	PBM	2	CR	19	2070	CF	F	1	95	5/12	6.416	33466
10	PBY	Z	CR.	in	2070	CF	ρ	1	10P	5/12	6:41	33467
10	PBIL	2	CR	in	2070	CF	F	1	IOF	5/12	6:41	33468
11	PBM	2,	CR	in	2070	;CF	Q.	1	IIP	5/12	6:42	33469
))	DBM	2	CR	in	2070	CF	F	1	115	5/12	6:42	33470
12	PBM	2	CR	in	2070	CF	P		12P	5/12	6:43	33471
12	PBY	2	CR	in	2070	CF	F	1	12 F	5/12	( , , , , )	33472
13	PBIY	2	FA	in	2072	ĆĒ.	P	1	13 P	5/12	6:44	33473

Sempler's Signature: Relinquished By:	Received By:	Date:	Time:
Sampler's Name:	Plainview	Iva	303
Building Name and Addre	121 Centi	al Park	. וצמ

Laboratory Name:	DheniX	Date	Time	Method Of Analysis
Analyzed By	,			
QC By				11001

Instructions to the Laboratory

Turnaround Time: Standard

Email Report to: emcguire@jcbroderick.com

Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

Charactine 5/11/16 1512

# Lead In Water Chain of Custody Form

Page 3 of 6

JCB#: 16-34415 (PBM)

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
13	PBM	2	_ FA	in	2072	CF	F	1	13F	5/12	6:44	33474
14	PBU	2	1/A	BV	2047	DW	P	1	1\$10	5/12	6:47	33475
14	PBM	2	HA	$\mathcal{B}_{V}^{\prime}$	2047	DW	F	1		5/12	1.11-	33476
15	PBM	2	OF	ำท	2091	IM	P	l	15 P	3/12	0.4.0	3347
16	PBM	Z	LR	ih	2077	DW	P		160	5/12		33478
16	PBY	2	LR	in	2077	DO	F	1	16F	5/12	1 1	33479
17	PBM	2	LR	iŋ	7102	DW	P	)	17 P	5/12	4 -	33480
17	PBIM	2	LR	îŋ	2102	DW	F	1	17 F	5/12	6:52	33481
18	PBY	2	HA	BN	2170	DW	P	1	18P	5/12	6:54	33482
	PBY	2	HA	BY	2170	DM	F	1	18 F	5/12		33483
19	PBIY	2	P001	in	2118	DW	P	1	19P	5/12	0 - 1	33484
19	PBH	2	Pool	in	2118	PW	F	}	19 F	5/12	6:56	33485

Client: Plainvieu	N old Beth	page C	8 <u>D</u>						
Building Name and Address		POB Middle School							
		121 Central Park Rd							
	Plainview		03	ر ا					
Sampler's Name;	RuiDas	rilva		] [					
Sampler's Signature:	mopal	<u> </u>		] [					
Relinguished By:	Received By:	Date:	Time:						
- 110	<del>//</del> -			_					
			_						
				E					

Laboratory Name:	Phenix	Date	Time	Method Of Analysis
Analyzed By				1.
QC By				1/00 1
				10000

Instructions to the Laboratory
Turnaround Time: Standard

Email Report to: emcguire@jcbroderick.com

Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

Cravadire 5/17/16 1512

### Lead In Water Chain of Custody Form

Page______of______ Date:___*5/13/16*____

JCB#: 16-34415 ( PBM)

20°NC

<u> </u>	Building	l	Functional Space		<u> </u>	T	T				201	· —
Map Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
20	PBM	2	MA	134	2191	DW	P	1	208	5/13	6:58	33486
20	PBM	2	1-)A	By	2191	DW	F	1	20F	3/13	6:58	33487
21	PBM	Z	MA	By	2208	DW	P	1	210	5/13	6:59	33488
21	PB14	2	HA	Ву	2708	DW	F	1	21F	5/13	17123	33489
22	PBY	2	HA	Ву	2153	DW	P	1	228	5/13		33490
22	PBY	2	HA	Bij	2153	DW	F	1	22F	3/13		33491
2-3	PBM	Z	HA	By	2217	かい	P		230	5/13		33492
2-3	PBM	2	HA	Ву	2217	DW	F		23F	5/13	7:05	33493
24	PBN	2	HA	B)/	2130	DW	P	l	24P	5/13	7:07	33494
24	PBM	2	HA	By	2130	DM	F	1	ZUF	5/13	7:07	331195
25	PBM	1	MA	Ву	1002	DW	P	(	250	5113	7:09	33496
25	OBM	J	HA	By	1002	DW	F	l	25F	5/13	7:09	33497

client: Plainvie	s old Beti	hpage	CSD
Building Name and Address	POB Mio	ldle So	chool
	121 Centre	al Bark	Rd
	Plainvieu		<u> </u>
Sampler's Name:	RUTDas;	Iva	
Sampler's Signature:	mipus		
Relinquished By:	Received By:	Date:	Time:
1/1/2)	/		
1576-2	4		

Laboratory Name: Phenix	Date	Tim e	Method Of Analysis
Analyzed By			1 .
QC By			1/001
			Teuz.

instructions to the Laboratory

Turnaround Time: Standard

Email Report to: emcguire@icbroderick.com

Special Instructions:

Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

Canadine 5/17/16 15/2

### Lead In Water **Chain of Custody Form**

Page <u>5</u> of <u>6</u> Date: <u>5 | V3 | 16</u>

JCB#: 16-34413 [ PBM)

Map Location	Building	Floor	Functional Space	121/224		T		Ι			20 11	
- Iviap Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
26	PBM	2	OF	17	2027	KF	P		26 P	5/13	7:11	33498
26	PBM	2	OF	in	2027	KF	F	1	26F	5/13	7:11	33499
77	PBM	2	OF	in	2025	BW _	P	1	27P	5113	7:12	33500
28	PBH	Z	NO	in	2015	NS	P	1	28P	5/13	7:15	33501
28	PBIY	2	No	in	2013	105	F	)	28F	5113	7:15	<i>335</i> 02
29	PBM	1	OF	in	1051	(F	P	1	299	5/13	7:19	33603
29	Pem	1_	GF	in	105/	CF CF	T	1	24 F	5/13	7:20	33504
30	PBH	]	OF	- In	1051	BW	P	1	36P	5/13	7:20	33505
3	PBH	1	OF	in	1033B	CF	P	1	34 P	5/13	7:22	33506
31	PBM	1	OF	in	1033B	CF	F	1	31F	5/13	7:22	33507
32	PBM	3	HA	Ву	3023	DW	P	1	_	5/13	41 - /	33508
32	PBM	3	714	By	3023	DW	F	1	32F	5/13	7 ( )	33509

Client: Plainview	old bethpa	age CSD		Laboratory Name: PV	neniy	Date	Time	Method Of Analysis
Building Name and Address	POB Mid	de Schon	,	Analyzed By	1/2		7	MEDIOG OF MILETYSIS
	121 centra			QC By				lead
		M 1180	3	Instructions to the Laborato	ry.			
Sampler's Name:	Rui Da Si			Turnaround Time: 540	rodard			
Sampler's Signature:	m- Das	~=		Email Report to:	emcguire@icbroderick.com			
Relinguished By:	Received By:	Date; T	me:	Special instructions:	Analyze Flush Samples	F) ONLY wher	Primary Sa	mpie exceeds 20pbb
Khri	$\swarrow$							

Cravadine 5/17/16 15/2

### Lead In Water Chain of Custody Form

Page <u>6</u> of <u>6</u>

JCB#: 16-34415 (PBM)

200NC

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
33	PBM	3	44	BY	3021	DW	P	1	33P	5/13	4	33510
33	PBM	3	HA	B1/	3021	DW	F	j	33F	5/13	7,28	33511
34	PBM	3	HA	BY	3034	DW	P	1	i	5/13	7:30	3351a
34	PBM	3	HA	By	3034	DW	F	1		5/13	7:30	33513
35	PBM	3	HA	BY	3058	DW	P	1	35P	5/13		33514
35	PBM	3	HA	By	3058	DW	F	1	35 F	5/13	7:32	33515
					·							

Client: Planvie W Old Building Name and Address	POB Widdle S				Leboratory Name: Phen Analyzed By	TX	Date	Time	Method Of Analysis
	121 Central A	XEK.	Rd		QC By			<u> </u>	lead
Sampler's Name; Sampler's Signature;	Plainvie W NY Proposition	Va	23		Instructions to the Laboratory Turnaround Time: ACM Email Report to:	Card emcguire@icbroderick.com	1	,	
Relinquished By:	Received By:	Date:	Time:		Special Instructions:	Analyze Flush Samples (F) O	NLY when I	Primary Sar	nple exceeds 20pbb
	Garad	ire	5/17	116	1572				



Monday, May 23, 2016

Attn: Mr Ed McGuire J C Broderick & Associates, Inc. 1775 Express Dr N Hauppauge, NY 11788

Project ID: 16-34415

Sample ID#s: BN33653 - BN33655, BN33657, BN33659, BN33661 - BN33662, BN33664,

BN33666, BN33668 - BN33671, BN33673, BN33675, BN33677, BN33679, BN33681, BN33683, BN33685, BN33687, BN33689, BN33691, BN33693,

BN33695, BN33697, BN33699, BN33701, BN33703, BN33705

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	soo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33653

Project ID: 16-34415

Client ID: 1 HBM 1 BR IN 1010 BF/SC 1P1

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 1 of 30 Ver 1





### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample InformationCustody InformationDateTimeMatrix:DRINKING WATERCollected by:05/17/166:14Location Code:JC-BRODReceived by:SW05/17/1615:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>_aboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33654

Project ID: 16-34415

Client ID: 1 HBM 1 BR IN 1010 BF/SC 1P2

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" below		

Laboratory Data

SDG ID: GBN33653

Phoenix ID: BN33655

Project ID: 16-34415

Client ID: 2 HBM 1 CR IN 1013 DW 2P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 30 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample InformationCustody InformationDateTimeMatrix:DRINKING WATERCollected by:05/17/166:14Location Code:JC-BRODReceived by:SW05/17/1615:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33657

Project ID: 16-34415

Client ID: 3 HBM 1 HA BY 1020 DW 3P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 30 Ver 1





### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample InformationCustody InformationDateTimeMatrix:DRINKING WATERCollected by:05/17/166:14Location Code:JC-BRODReceived by:SW05/17/1615:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u> SDG ID: GBN33653

Phoenix ID: BN33659

Project ID: 16-34415

Client ID: 4 HBM 1 HA BY 1020 DW 4P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 5 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ple Information Cu		<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	soo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33661

Project ID: 16-34415

Client ID: 5 HBM 1 HA BY 1041 WC 5P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duch Doguest	Ctondord	Analyzad by	and IID. III balann		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBN33653

Phoenix ID: BN33662

Project ID: 16-34415

Client ID: 6 HBM 1 HA BY 1041 DW 6P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 7 of 30 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ormation Custody Info		<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" below		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33664

Project ID: 16-34415

Client ID: 7 HBM 1 LR IN 1041 DW 7P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duck Degucests	Ctondord	A a l a al la	IID II I - I -		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33666

Project ID: 16-34415

Client ID: 8 HBM 2 KI IN 2120 KC 8P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12

Rush Request: Standard Analyzed by: see "By" below

SDG ID: GBN33653

aboratory Data Phoenix ID: BN33668

16-34415 Project ID:

Client ID: 9 HBM 2 CA IN 2135 WC 9P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" below		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33669

Project ID: 16-34415

Client ID: 10 HBM 2 CA IN 2135 WC 10P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 11 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	tion Custody Information			<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	soo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33670

Project ID: 16-34415

Client ID: 11 HBM 2 CA IN 2135 WC 11P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 12 of 30 Ver 1







SDG ID: GBN33653

Phoenix ID: BN33671

# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>tion</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
D 1 D 1	0, 1, 1				

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID: Client ID: 12 HBM 2 HA IN 2151 DW 12P

16-34415

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 13 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Ruch Request:	Standard	Analyzed by:	coo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33673

Project ID: 16-34415

Client ID: 13 HBM 2 HA IN 2115 DW 13P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23. 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 14 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33675

Project ID: 16-34415

Client ID: 14 HBM 2 HA IN 2115 DW 14P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" below		

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33677

Project ID: 16-34415

Client ID: 15 HBM 1 HA BY 1154 DW 15P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23. 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 16 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duch Doguest	Ctondord	Analyzad by	and IID. III balann		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33679

Project ID: 16-34415

Client ID: 16 HBM 1 HA BY 1149 DW 16P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 17 of 30 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample InformationCustody InformationDateTimeMatrix:DRINKING WATERCollected by:05/17/166:14Location Code:JC-BRODReceived by:SW05/17/1615:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33681

Project ID: 16-34415

Client ID: 17 HBM 2 HA BY 2008 DW 17P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" below		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33683

Project ID: 16-34415

Client ID: 18 HBM 2 HA BY 2024 DW 18P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 19 of 30 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/17/16 Matrix: Collected by: 6:14 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

SDG ID: GBN33653 aboratory Data Phoenix ID: BN33685

16-34415 Project ID:

19 HBM 1 HA BY 1067 DW 19P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.006 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 20 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	soo "By" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33653

Phoenix ID: BN33687

Project ID: 16-34415

Client ID: 20 HBM 2 HA BY 2047 DW 20P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 21 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>tion</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33689

Project ID: 16-34415

Client ID: 21 HBM 2 CR IN 2186 EC 21P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 22 of 30 Ver 1







SDG ID: GBN33653

Phoenix ID: BN33691

# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	ustody Information Da		
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duck Deguest	Ctondord	A a l a d la	IID II I I.		

Rush Request: Standard Analyzed by: see "By" below

Client ID: 22 HBM 2 CR IN 2186 EC 22P

16-34415

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 23 of 30 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	ustody Information Da		
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duck Deguest	Ctondord	A a l a d la	IID II I I.		

Rush Request: Standard Analyzed by: see "By" below

<u>Lab</u>

aboratory Data SDG ID: GBN33653

Phoenix ID: BN33693

Project ID: 16-34415

Client ID: 23 HBM 2 CR IN 2180 EC 23P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 24 of 30 Ver 1







SDG ID: GBN33653

Phoenix ID: BN33695

**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample InformationCustody InformationDateTimeMatrix:DRINKING WATERCollected by:05/17/166:14Location Code:JC-BRODReceived by:SW05/17/1615:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID:

Client ID: 24 HBM 2 CR IN 2180 EC 24P

16-34415

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5

aboratory Data

Total Metal Digestion Completed 05/18/16 TH/UU E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 25 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duch Doguest	Ctondord	Analyzad by	and IID. III balann		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33697

Project ID: 16-34415

Client ID: 25 HBM 2 HA BY 2170 DW 25P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 26 of 30 Ver 1







SDG ID: GBN33653

Phoenix ID: BN33699

### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID:

Client ID: 26 HBM 2 HA BY 2076 DW 26P

16-34415

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Ву Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

.aboratorv Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 27 of 30 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/17/16 Matrix: Collected by: 6:14 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

SDG ID: GBN33653 aboratory Data

Phoenix ID: BN33701

16-34415 Project ID:

27 HBM 2 HA IN 2096 DW 27P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Reference Βv Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 28 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Durala Danissati	Otamalanal	A a l a .l. la	"B " ' '		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33703

Project ID: 16-34415

Client ID: 28 HBM 1 HA IN 1107 DW 28P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.010 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 29 of 30 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:		05/17/16	6:14	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
	_					

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GBN33653

Phoenix ID: BN33705

Project ID: 16-34415

Client ID: 29 HBM 1 HA IN 1128 DW 29P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 30 of 30 Ver 1



### Environmental Laboratories, Inc.

Tel. (860) 645-1102





QA/QC Report

May 23, 2016

QA/QC Data

Fax (860) 645-0823

SDG I.D.: GBN33653

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 346092A (mg/L), BN33664, BN33666)	, QC San	nple No	: BN3365	1 (BN33	653, BN	N33654	, BN336	55, BN	33657,	BN336	59, BN	33661,	BN33662,
ICP Metals - Aqueous													
Lead Comment:	BRL	0.001				97.5			102			85 - 115	20
Additional: LCS acceptance rang	e is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 346093 (mg/L), 0 BN33679, BN33681, BN33683		ole No: I	3N33668	(BN336	68, BN3	33669,	BN3367	0, BN3	3671, E	3N3367	3, BN3	3675, B	N33677,
ICP Metals - Aqueous													
Lead	BRL	0.001	< 0.001	< 0.001	NC	105			102			85 - 115	20
Comment:													
Additional: LCS acceptance rang	e is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 346093A (mg/L) BN33699, BN33701, BN33703		nple No	: BN3368	5 (BN33	685, BN	N33687	, BN336	89, BN	33691,	BN336	93, BN	33695,	BN33697,
ICP Metals - Aqueous													
Lead	BRL	0.001				105			97.2			85 - 115	20
Comment:													
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.													
QA/QC Batch 346094 (mg/L), (	QC Samp	ole No: I	3N33705	(BN337	05)								
ICP Metals - Aqueous													
Lead	BRL	0.001	0.004	0.003	NC	100			101			85 - 115	20

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

MS - Matrix Spike

Comment:

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 23, 2016

Monday, May 23, 2016

Sample Criteria Exceedences Report
GBN33653 - JC-BROD

Criteria: None State: NY

RL Analysis SampNo Acode Phoenix Analyte Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***



### **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



## **Analysis Comments**

May 23, 2016 SDG I.D.: GBN33653

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

# nelac E

# **NY Temperature Narration**

May 23, 2016

SDG I.D.: GBN33653

The samples in this delivery group were received at 20°C. (Note acceptance criteria is above freezing up to 6°C)

Lead In Water
Chain of Custody Form

Page / of 5
Date: 5/17/16

JCB#: 16-34415

200N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
	HBM	1	BR	in	1010	BF/SC	P	1	191	5(17	6:14	3365
1	HBU	1	BR	In	1010.	BF/SC	ρ	1	192	5/17	6:17	3365
2	HBM	(	LR	15	1013	OW	P	ĺ	28	5/17	6:18	3365
2	HBM	1	CR	M	1013.	OW	4	(	25	5/14	6:11	33661
3	ABM	- [	HA.	by	1020	PW	P		3P	5/17	6,21	3365
<u>5</u>	HBM	1	HA	by	0201	DW	4		3F		6:22	3365
વ	HOM	1	HA	by	1020	DW	P	1	<b>3</b> P		4123	3365
4	HBM	-	HA	by	1720	DW	f	)	<b>3</b> F.	5117	C'LH	3366
5	HBM		HA	by	1041	WC	P		5P.	5/17	6,27	3366
G	HBM	į	A H	by	1041	PU	P	l	6P	5/17	6'.28	3364
9	HBM	1	HA	by	1041	DW	+	1	6F	5/17	6:30	3366
+	HBM		LR	14	1041	DW	P		7.0	5117	6,31	3366

Chante POBCS(				Laboratory Hame: MX	K	Dete	Time	Method Of Analysis
Building Hame and Address	100 Washing	ton an	ع	Analyzed by				
HBMathin Ms.	Plainurew	ny		QC By				lead
		(		instructions to the Laborato	DY	_		
Samular's Home:	Callua-			Ternaround Time: Stew	deval.	7		
Sanatar's Manatare;				Emeil Report to:	emcguire@jcbroderick.com	1		
Polloculational DrsS-1 # ~	Reseived By:	Date:	Three;	Special Instructions:	Analyze Flush Samples (F) O	NLY whe	n Primary S	ample exceeds 20pbb
<del></del>		<u> </u>	4		-			
L	<del></del>							
	Parad	ľre ∶	517/16	0 1512				

# Lead In Water Chain of Custody Form

Page 2 of 5
Date: **£/**/7/16

JCB#: 16-344 15

20°N/c

	David diam	г	F	1					1		<u> </u>		_
Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result	
7	HBM	ı	LR	17	1241	DW	F	(	7+	5117	6',32	3340	25
8	HBM	2_	KI	JN.	2120	KC	P	(	8 P	5/17	6'.35	3366	1
8	HBM	2	KI	M	2120	_KC _	F	ĺ	8t	5/17	6:36	3366	1
9	HBM	2	CA	1N	2135	wc	P	(	90	5/17	(38	33104	18
10	HBM	7	CA	I٧	2135	WC	P	(	109	5117	(139	<i>3</i> 346	9
<u> </u>	ABM	2	CA	M	2135	M C	P	ĺ	NP	5117	6,40	<i>3</i> 367	`
19	HBM	2	HA	M	2151	DW	P	(	128	5117	6:42	3367	]
12	HBM	ŗ	HA	147	2151	Dω	t	1	124	5/17	(349	3367	2
13	ABM	۲,	HA	in	2115	OW	P	\	130	5117	6:47	3367	3
13	HBW	3	HA	111	2115	DW	7	\	131	5117	(0,50	3367	14
14	HBM	Σ - —	H+	In	2115	NW	P	\	14F	5117	. ( -	33679	1
14	#8 M	2	HA	M.	2115	DW	F	(	144	5117	6:53	336	1

Cheet POB CS P Subling Name and Address HB Mattin M.S	bo Washinster Plainvan das		ic	Laboratory Rome: ~\{\mathcal{O}\)? Analyzed By QC By	<u>(</u>	Duka	Time	Mothed Of Analysis  L Card
Semplar's Hame; Semplar's Skneture;	Sq/II co	Dute:	Time;	Turnaround Time: 'y-f-y- Email Report to: Special Instructions:	emcguire@icbroderick.com Analyze Flush Samples (F) O	NLY when	Primary S	ample exceeds 20pbb
`	Claradin	2 51	17/16	1512				

# Lead In Water Chain of Custody Form

Page 3 of 5

Date: 5/17/16

JCB#: 16-34115

200N/C

Map Location	Building	Floor	Functional Space					I	<del></del>		$\frac{2}{1}$	· -
wap Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
15	ABM	١	HA	by	1154	DN	ρ	į	15P	3107	6:55	3367
15	HBM	١	HA	by	1154	DV	t	(	154	5/17	6.56	33678
16	HBM	1	HA	by	1149	DW	P	i	169	5/14	6.58	3367
16	ABM	١	HA	by	1149	DW	4	1	165	5/07	7.00	33680
48.53	HBM	2	HA.	by	2008	DY	P	1	17P	5/19	7,03	33681
and the same of th	4BM	2	HA	by	2208	OW	4	1	175	5117	7:05	3368
×18	HBM	2		by	2924	DW	P	1	100	5117		33683
r 18	HBM	2	HA	by	2024	DW	7		18t	5/1.7	7210	33681
19	HON	\	HA	by	1067	Ow	P	1	190	5117	7.15	33689
19	HBM	\	AA	by	1067	DW	Į,	1	195	5117	7:16	33486
20	HBM	ک	AH	by	2047	DW	P	Ì	20 P	5/17	7:20	3368
20	HBM	7	HA	10	2047	DW	+	1	205	5/17	7:22	3368

Chants POBLS	D			Laboratory Name: -YO/10	Date	Time	Method Of Analysis	
HB modtin	Plainview N.y			Analyzed By CRC By				Leas
Secondar's Home; Squire		(		Instructions to the Laborato Turneround Time: \$ 164 Emell Report to:	nd مطرس خ emcguire@icbroderick.com	}		
Palambhed In Sgillos	Persived Br:	Date:	Time:	Special Instructions:	Analyze Flush Samples (F) O	NLY when	Primary Sa	imple exceeds 20pbb
	Omadi	Le Le	51111	0 1512	(			

#### Lead In Water Chain of Custody Form

Page of 5

JCB#: 16-311415

2001/0

	,												
Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result	
21	HBM	2	CR	11	2186	EC	ρ		ZIP	5(17	7:27	336	Ra
21	ABM	2	CR	In	2186	EC	F	(	BSH	5117	7.25	3369	
22	HBM	2	CR	In	2186	EC	P	1	aar	5/17	7,28	336°	1
22	HBM	ブ	CR_	In	,2186	EC	F	1	22 F	5/17	7:29	336	ŀ
23	4BM	ک	CR_	10	2180	EC	P	\	23 P	5/17	7:31	336	1
23	ABr	ک	CR_	10	2180	EC	F	(	23F	5/17	7'31	336	1
24	#BW	2	CR	In	2180	Ec	P	J	248	5/17	7:2,2	336	
0 1	HBM	2	CR	In	2180	EC	F	1	24 F	5609	7.32	3369	76
<u>a</u> 5	HBM	Z	HA	by	7170	Dw	P	1	259	5/17	7:35	3369	
92	ABM	2	AH	by	2176	Dw	7	1	25F	5117	7:36	3360	18
26	HBM	<u>J</u>	HA	by	2076	OV	P	(	269	5117	7,40	3369	9
26	HBM	2	HA	by	2076	DW	7	į	26 F	5167	7:41	3370	0

Chants POI3 (50				Leb	erstory Name: ~	YORK	De	to Time	Mathed Of Analysis	
the mutting many address the muttin	Plainview a	ton a	ve	QC	llyzed By By				Lead	
Semeler's Home; Semeler's Semelers;	5914a-	7.7		Tur	neround Time: 5+a	Mark Mark emcguire@icbrode	rick com			
Pallocalitied by Seyth	Restrict by:	Date:	Time:		cial instructions:			when Primary S	ample exceeds 20pbb	
	Parac	live	0171	6 18	572					

Lead In Water Chain of Custody Form

JCB#: 2 16-31415

20°NC

	Durildin a		F	т -	<del>                                     </del>	<del></del>	<del></del>	<del>,</del>		,	<u> </u>	
Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
	HBM	2	HX	in	2096	OW	P	1	27P	5117	7 44	3370
27	HBM	2	НA	in	2096	Dw	F	)	27F	5117	7,45	3370
98	#BW	1	HA	10	1107	DW	8	1	280	5107	7:50	3370
28	BBM	(	HA	14	1107	QW	F	)	28F	5117		3370
	Hem	1	HA	١٧٦	1158	DW	R		29P	5/17	7:58	3370
29	HBM	1	HA	N	1/28	DW	1	l	295	5/17	7:58	33706
					•							
											-	
		_							·			

CHANGE POB CSC	>			Laboratory Nome: - YOr C	Date	Time	Method Of Analysis
HB Month?	Planview	GOON AC	e	Analyzed by QC by			Lead
Me 5 Samular'a Nama; Samular'a Simulara;	Sail-			Turneround Time: Transcound Time: Transc			
Patternatured By Sych	Ressived by:	Deta:	Time:	Special instructions: Analyze Flush Samples (F	ONLY when	Primary Sa	ample exceeds 20pbb

Maradine 5/17/16 15/2



Friday, May 20, 2016

Attn: Mr Ed McGuire J C Broderick & Associates, Inc. 1775 Express Dr N Hauppauge, NY 11788

Project ID: 16-34415

Sample ID#s: BN33516, BN33518, BN33520, BN33522, BN33524, BN33526 - BN33528,

BN33530, BN33532, BN33534, BN33536, BN33538, BN33540 - BN33544, BN33546, BN33548, BN33550, BN33552 - BN33556, BN33558, BN33560 -

BN33561, BN33563

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:00 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33516

Phoenix ID: BN33516

Project ID: 16-34415

Client ID: 1 SES 1 CR IN 2006 CF 1P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 TH\CB/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 1 of 30 Ver 1





#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:01 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33516

Phoenix ID: BN33518

Project ID: 16-34415

Client ID: 2 SES 1 CR IN 2008 CF 2P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 30 Ver 1





#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:03 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33516

Phoenix ID: BN33520

Project ID: 16-34415

Client ID: 3 SES 1 CR IN 2009 CF 3P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>T</u>			
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:07		
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12		
Rush Request:	Standard	Analyzed by:	see "By" below				

Laboratory Data

SDG ID: GBN33516

Phoenix ID: BN33522

Project ID: 16-34415

Client ID: 4 SES 1 CR IN 2005 CF 4P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.016	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:10 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33524

Project ID: 16-34415

Client ID: 5 SES 1 CR IN 2010 CF 5P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 5 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>T</u>		
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:13	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "Bv" below			

P.O.#: Laboratory Data

SDG ID: GBN33516

Phoenix ID: BN33526

Project ID: 16-34415

Client ID: 6 SES 1 CR IN 2004A CF 6P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.067	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:13
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

_aboratory Data

SDG ID: GBN33516

Phoenix ID: BN33527

Project ID: 16-34415

P.O.#:

Client ID: 6 SES 1 CR IN 2004A CF 6F

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.114	0.001	1	mg/L	0.015		05/20/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/18/16	AG/TH/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 7 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:15 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33528

Project ID: 16-34415

Client ID: 7 SES 1 CR IN 2011 CF 7P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 30 Ver 1





#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:17 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33530

Project ID: 16-34415

Client ID: 8 SES 1 CR IN 2012 CF 8P

RL/ DW Sec Parameter Result **PQL** DIL Units MCL Goal Date/Time Βv Reference Lead 0.001 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:20
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

aboratory Data SDG ID: GBN33516

Phoenix ID: BN33532

Project ID: 16-34415

Client ID: 9 SES 1 CR IN 2003 CF 9P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>		
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:22	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "By" below			

aboratory Data

SDG ID: GBN33516

Phoenix ID: BN33534

Project ID: 16-34415

Client ID: 10 SES 1 CR IN 2002 CF 10P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 11 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:25 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u>

SDG ID: GBN33516

Phoenix ID: BN33536

Project ID: 16-34415

Client ID: 11 SES 1 HA BY 2012 DW 11P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 12 of 30 Ver 1







SDG ID: GBN33516

Phoenix ID: BN33538

**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:28 Received by: Location Code: JC-BROD SW 05/17/16 15:12

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID:

Client ID: 12 SES 1 CR IN 2001 CF 12P

16-34415

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/18/16 E200.5 Completed 05/17/16 CB/AG/BFE200.5/E200.7 **Total Metal Digestion** 

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 13 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:30
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

aboratory Data

SDG ID: GBN33516

Phoenix ID: BN33540

Project ID: 16-34415

P.O.#:

Client ID: 13 SES 1 CR IN 2023 CF 13P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.065	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 14 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:31 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33541

Project ID: 16-34415

Client ID: 13 SES 1 CR IN 2023 CF 13F

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.010 0.001 mg/L 0.015 05/19/16 E200.5 Completed 05/18/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:32
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33542

Project ID: 16-34415

P.O.#:

Client ID: 14 SES 1 HA BY 2023 DW 14P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.034	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 16 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:33
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33543

Project ID: 16-34415

Client ID: 14 SES 1 HA BY 2023 DW 14F

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 17 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information C		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:34
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33544

Project ID: 16-34415

Client ID: 15 SES 1 CR IN 2024 CF 15P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.015 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/B	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:37
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33516
Phoenix ID: BN33546

Project ID: 16-34415

Client ID: 16 SES 1 CR IN 2025 CF 16P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/B	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 19 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:38
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

<u>Laboratory Data</u>

SDG ID: GBN33516

Phoenix ID: BN33548

Project ID: 16-34415

Client ID: 17 SES 1 CR IN 2026 CF 17P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 20 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:39
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33550

Project ID: 16-34415

Client ID: 18 SES 1 CR IN 2029 CF 18P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 21 of 30 Ver 1





#### Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:41
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33552

Project ID: 16-34415

P.O.#:

Client ID: 19 SES 1 CR IN 2042 BF 19P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.031	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 22 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:42
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33553

Project ID: 16-34415

Client ID: 19 SES 1 CR IN 2042 BF 19F

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 23 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Information	<u>tion</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:43
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33554

Project ID: 16-34415

Client ID: 20 SES 1 CR IN 2042 BF 20P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.022	0.001	1	mg/L	0.015		05/18/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/17/16	CB/AG/E	BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 24 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>		
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:44	
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12	
Rush Request:	Standard	Analyzed by:	see "Bv" below			

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33555

Project ID: 16-34415

Client ID: 20 SES 1 CR IN 2042 BF 20F

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 25 of 30 Ver 1







## **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:45
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33556

Project ID: 16-34415

Client ID: 21 SES 1 HA IN 2046 DW 21P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.006 Completed	0.001	1	mg/L	0.015		05/18/16 05/17/16	LK CB/AG/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 26 of 30 Ver 1







**Analysis Report** 

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:48 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

SDG ID: GBN33516

Phoenix ID: BN33558

Project ID: 16-34415

22 SES 1 HA BY 2047 DW 22P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/19/16 E200.5 Completed 05/18/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 27 of 30 Ver 1







# **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Tir</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:51			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "By" below					

P.O.#:

**Laboratory Data** 

SDG ID: GBN33516

Phoenix ID: BN33560

Project ID: 16-34415

Client ID: 23 SES 1 OF IN 2059 WC 23P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 28 of 30 Ver 1







# **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Time</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:53			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "Bv" below					

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33561

Project ID: 16-34415

Client ID: 24 SES 1 FA IN 2082 CF 24P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 29 of 30 Ver 1







# **Analysis Report**

May 20, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Tim</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:56			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "Ry" helow					

P.O.#:

Laboratory Data SDG ID: GBN33516

Phoenix ID: BN33563

Project ID: 16-34415

Client ID: 25 SES 1 NO IN 2087 NS 25P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

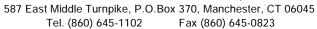
#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director


May 20, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 30 of 30 Ver 1



# Environmental Laboratories, Inc.





SDG I.D.: GBN33516

# QA/QC Report

May 20, 2016

# QA/QC Data

Parameter         Blank Plank         RL Result Result         Dup Result         LCS RPD RPD         LCS RPD RPD         LCS RPD RPD RPD         MS RPD
CP Metals - Aqueous
Lead       BRL       0.001       91.6       92.1       85-115       20         Comment:       Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.         CA/QC Batch 345933 (mg/L), QC Sample No: BN33518 (BN33518, BN33520, BN33522, BN33524, BN33526, BN33526, BN33528, BN33534, BN335344, BN33544, BN33544, BN33544, BN33544, BN33544, BN33544, BN33544, BN33544, BN33554, BN33554, BN33554, BN33554, BN33556, BN33554, BN33554, BN33554, BN33556, BN33554, BN33556, BN33554, BN33556, BR1         Lead       BRL 0.001       91.5       90.2       85-115       20
Comment:  Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933 (mg/L), QC Sample No: BN33518 (BN33518, BN33520, BN33522, BN33524, BN33526, BN33528, BN33530, BN33532, BN33534, BN33536)  ICP Metals - Aqueous  Lead BRL 0.001 0.002 0.001 NC 91.5 91.2 85-115 20  Comment:  Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33548, BN33550, BN33552, BN33554, BN33556)  ICP Metals - Aqueous  Lead BRL 0.001 91.5 90.2 85-115 20
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933 (mg/L), QC Sample No: BN33518 (BN33518, BN33520, BN33522, BN33524, BN33526, BN33528, BN33530, BN33532, BN33534, BN33536)  ICP Metals - Aqueous  Lead BRL 0.001 0.002 0.001 NC 91.5 91.2 85-115 20  Comment:  Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33548, BN33550, BN33552, BN33554, BN33556)  ICP Metals - Aqueous  Lead BRL 0.001 91.5 90.2 85-115 20
QA/QC Batch 345933 (mg/L), QC Sample No: BN33518 (BN33518, BN33520, BN33524, BN33524, BN33526, BN33528, BN33530, BN33532, BN33534, BN33536)         ICP Metals - Aqueous         Lead       BRL       0.001       0.002       0.001       NC       91.5       91.2       85 - 115       20         Comment:         Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.         QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33546, BN33554, BN33554, BN33555)         BN33552, BN33554, BN33556)         ICP Metals - Aqueous         Lead       BRL       0.001       91.5       90.2       85 - 115       20
CP Metals - Aqueous   Septending   Septend
Lead       BRL       0.001       0.002       0.001       NC       91.5       91.2       85 - 115       20         Comment:         Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.         QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33546, BN33548, BN33550, BN33552, BN33554, BN33556)         ICP Metals - Aqueous         Lead       BRL       0.001       91.5       90.2       85 - 115       20
Comment: Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33546, BN33554, BN33552, BN33554, BN33556)  ICP Metals - Aqueous  Lead BRL 0.001 91.5 90.2 85-115 20
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.  QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33544, BN33544, BN33546, BN33548, BN33550, BN33552, BN33554, BN33556)  ICP Metals - Aqueous  Lead BRL 0.001 91.5 90.2 85-115 20
QA/QC Batch 345933A (mg/L), QC Sample No: BN33538 (BN33538, BN33540, BN33542, BN33544, BN33546, BN33548, BN33550, BN33552, BN33554, BN33556)  ICP Metals - Aqueous Lead BRL 0.001 91.5 90.2 85 - 115 20
BN33552, BN33554, BN33556)  ICP Metals - Aqueous  Lead BRL 0.001 91.5 90.2 85 - 115 20
Lead BRL 0.001 91.5 90.2 85-115 20
Comment:
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.
QA/QC Batch 346074A (mg/L), QC Sample No: BN33565 (BN33527)
ICP Metals - Aqueous
Lead BRL 0.001 96.5 95.7 85-115 20
Comment:
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.
QA/QC Batch 346075 (mg/L), QC Sample No: BN34162 (BN33541, BN33543)
ICP Metals - Aqueous
Lead BRL 0.001 0.005 0.004 NC 96.7 92.1 85 - 115 20 Comment:
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.
QA/QC Batch 346076 (mg/L), QC Sample No: BN34310 (BN33555)
ICP Metals - Aqueous
Lead BRL 0.001 0.003 0.003 NC 89.1 86.0 85 - 115 20
Comment:
Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

SDG I.D.: GBN33516

% RPD % Blk Sample Dup Dup LCS LCSD LCS MS MSD MS Rec Blank RL Result Result RPD % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 20, 2016

Friday, May 20, 2016 Criteria: None

State: NY

**Sample Criteria Exceedences Report** 

**GBN33516 - JC-BROD** 

State:	NY						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BN33522	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.016	0.001	0.015	0.001	mg/L
BN33522	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.016	0.001	0.015	0.015	mg/L
BN33526	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.067	0.001	0.015	0.001	mg/L
BN33526	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.067	0.001	0.015	0.015	mg/L
BN33527	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.114	0.001	0.015	0.001	mg/L
BN33527	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.114	0.001	0.015	0.015	mg/L
BN33540	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.065	0.001	0.015	0.001	mg/L
BN33540	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.065	0.001	0.015	0.015	mg/L
BN33542	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.034	0.001	0.015	0.001	mg/L
BN33542	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.034	0.001	0.015	0.015	mg/L
BN33552	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.031	0.001	0.015	0.001	mg/L
BN33552	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.031	0.001	0.015	0.015	mg/L
BN33554	PB-DWICP	Lead	EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs	0.022	0.001	0.015	0.001	mg/L
BN33554	PB-DWICP	Lead	NY / NY Residential DW / Lead	0.022	0.001	0.015	0.015	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1



### **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



# **Analysis Comments**

May 20, 2016 SDG I.D.: GBN33516

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

# nelac 1

# **NY Temperature Narration**

May 20, 2016

SDG I.D.: GBN33516

The samples in this delivery group were received at  $20^{\circ}$ C. (Note acceptance criteria is above freezing up to  $6^{\circ}$ C)

Lead In Water Chain of Custody Form

JCB#:_/6-344/5 (SES)

20°NC

	Building	Ι.	Functional Space			<u> </u>	<u> </u>	Γ	<del></del>	~	20 MC	<del></del>
Map Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SES	1	CR	İn	2006	(F	ρ	1	10	5/13	\$6:00 3	35 6 6
	SES	}	CR	in	2006	CF	F	)	16	5/13	6,00	33517
2	SES	)	CR	in	2008	CF	P	)	ZP	5/13	6:01	33518
2	SES	)	CR	1~	2008	(F	F	}	2F	5/13	6:0)	3351
73	SES	1	CR	ÎΛ	2009	CF	ρ		3 <i>P</i>	5/13	6.03	3352
3	SES		CR	71	2909	CF	F		3F	5/13	6:03	33521
Y	SES		CR	Ì	2005	CF	P	1	YP.	5/13	6:07	33523
Y	SES	1	CR	11	2005	CF	F	1	4F	5/1)	6:07	33523
5	SES	1	CR	j,	2010	CF	P	)	5P	5/13	6:10	3352L
5	SES	1	CR	1~	2010	CF	F	1	5F	5/13	610	33525
6	SES	1	CR	5,	2004A	CF	P	1	69	5/13	61/3	33526
6	SES		CR	in	20042	CF	F	1	6F	5/13	6:13	3352°

Chant: Planer - Old				Laboratory Name: Place	٠٢	Date	Time	Method Of Analysis
Building Name and Address	33 Redford Ro	d. Plainvier	/	Analyzed By				/
Straterd Rand		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		QC By				leed
ES	N1 1163		1					
				instructions to the Laborator	<b>K</b> . ,			
Sampler's Name;	Kour Mender	<i>ـــالـــ</i> ـ		Turnaround Time: Stande		7		
Sempler's Steneture:	CAG			Email Report to:	emcguire@jcbroderick.com			
Informished by	Reseived By:	Detes	Time:	Special Instructions:	Analyze Flush Samples (F) (	ONLY when	n Primary Sa	ample exceeds 20obb
$\mathcal{M}(a)$							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Charadire 5/17/16 1512

Lead In Water Chain of Custody Form

JCB#: 16-34415 (SES)

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	SES	1	CR	10	2011	CF	P	1	72	5/13	06:15	33528
7	SES	1	CR	ì	2011	CF	F	1	7F	5/13		33529
8	SES	1	CR	5^	2012	CF	P	١	8P	5/13	06:17	33530
8	SES	1	CR	in	2012	CF	F	1	8F	5/13	06:18	33531
9	SES	]	CR	j_	2003	CF	P	ì	9 P	5/13		33532
9	SES	)	CR	ĺ٨	2003	CF	F	ĺ	9 F	5/13		33533
10	5,55	1	CR	in	2002	CF	P	l	109	5/13	, 1	33534
10	SES	1	CR	in	2602	4	F	l	IOF	5//3	7.7	33535
1)	SES	1	HA	$L_{V}$	2912	DV	P	İ	IIP	5/13	o6:25	33536
]	SES	<u></u>	14/4	Ly	2012	DW	f	l	IIF	5/13		33537
17	SES	ſ	(R	iΛ	2001	LF	P	i	12P	5/13		
12	SES	1	(R	j~	2001	(F	F	1	12F	5/13		3353

Chart: Plainview -OK			Laboratory Home: Phoenix		7	
Stratford Lond ES	33 Bedford NY 11803	Rd. Physicipes	Analyzed By QC By	Data	Time	Lead
Sempler's Home; Sempler's Simplers;	Kan Manden		Turneround Time: Stadud  Email Report to: emcguire@icbroderick.com	7		
Pathombhad By:	Paceived By:	Data: Yime:	Special Instructions: Analyze Flush Samples (F)	ONLY when	Primary Sa	ample exceeds 20pbb

Maradine 5/17/16 15/2

#### Lead In Water Chain of Custody Form

Page_____of____of____

JCB#: 16-34415 (JE)

20°N/c

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
13	SES	1	CR	IN	2023	CF	P	1	13P	5/13	06:30	3354
13	SES	1	CR	IN	2023	CF	F	١	137	5/13	06:31	3354
14	SES	1	ER HA	46	2023	EEDW	P	1	14 P	5/13	06:32	3354
И	SES	1	ER HA	BN	2023	EEDW	F	ı	14 F	5/13	06:33	3354
15	SES	1	CR	IN	2024	CF	P	1	15 P	5/13	06:34	3354
15	SES	١	CR	IN	2024	CF	F	}	15 F	5/13	06:35	3354
16	SES	1	CR	17	2025	CF	P	į	16 P	5/13	06:37	3354
16	SES	1	CR	IN	2025	CF	F	1	16 F	5/13	06:37	3354
17	SES	1	CR	12	202%	CF	Р	Ĺ	17 P	5/13	06:38	3354
17	SES	j	CR	111	2028	CF	F	Į	17F	5/13	06:38	3354
18	SES	1	CR	M	2029	CF	P	l	18P	5/13	06:39	3365
14	SES	Ì	CR	11	2029	CF	F	l	18F	5/13	6:39	3355

Client: Physician	-Old Bellpers			Laboratory Name: PLor	enix	Date	Time	Method Of Analysis
Building Name and Address	71 Bedford	Rd. Plane	أنعلسا	Analyzed By	1		7	
Strafford Road	NY 1180			QC By			士二	Lend
Samaler's Home;	Kovin Menden			Instructions to the Laborate				
Sampler's Simulators	TAR S				adad			
Pelinarished Dr.			T	Email Report to:	emcguire@jcbroderick	.com		
	Received Br:	Distai	lime;	Special Instructions:	Analyze Flush Sam	ples (F) ONLY when	Primary S	ample exceeds 20pbb
- Flan						<del>'</del>		
120	. 1	i						

Maradére 5/17/16/15/2

Lead In Water Chain of Custody Form Page _____ of _____ Date: _____ 5/13/16

JCB#: 16-344/5 (SES)

20°NC

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
19	5ES	1	CR	IN	2042	BF	P	1	197	5/13	6:41	3355
19	SES	١	CR	iN	2042	BF	F	!	19F	5/13	6:42	33553
20	SES	(	CR	M	2042	BF	P	ĺ	204	5/13	6:43	33554
20	\$E\$	1	CR	IN	2042	BF	F	l	20 F	5/13	6:44	33555
2١	SES	١	AH	ΒÀ	2046	DW	P	١	21 P	5/13	6.45	3355
21	SES		HA	BY	2046	DW	F	t	21 F	5/13	6:46	3355
22	ses	1	HA	134	2047	Ma	9	l	22P	5/13	6:48	3355
22	SES	ı	HA	ВЧ	2647	DW	F	1	22 F	5/13	6:49	33559
23	SES	1	OF	IN	2059	WC	P	1	23P	5/13	6:51	33560
24	SES	1	FA	IN	2082	<b>Q</b> F	Р	1	24P	5/13	6:53	33561
24	SES	١	FA	IN	2082	CF	F	į	24F	5/13	6.54	33562
25	SES	1	70	N	2087	NS	P	i	25P	5/13	( )	33563

Client: Plainview - 0		-		Laboratory Name:	oens		Date	Time	Method Of Analysis
Building Name and Address	338 Land Lo	Paravier	7	Analyzed By				1	/ / /
>*a'	NY 11803		1	QC By					Lead
5	103 11802								
Sempler's Name:	Koun Mande	2.4	-	instructions to the Laborat					
Someter's Steenture:	1		<b>d</b>	Turneround Time: 5+2 Email Report to:	emcguire@jcbroderi	ick.com			
Pallamished Dr.	Persived by:	Date: Time:	_	Special Instructions:	Analyze Flush Sa	mples (F) ON	ILY when	Primary Sa	imple exceeds 20pbb
Mass			-						

Charadine 5/17/16 15/2

#### Lead In Water Chain of Custody Form

Page 5 of 18

JCB#: 16-34415

20°NC

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
15	SES	1	No	IN	2087	NS	F	ł	25F	5/13	6:58	335te
26	SES	1	CA	IN	2095	WC	7	1	267	5/13	6159	335G
27	SES	1	CA	111	2095	WC	P	1	2712	5/13	7:01	3357e
24	SES	1	KI	m	2096	KC	P	l	28P	5/13	7:03	3356
28	SES	ħ.	KI	IN	2096	KC	Щ	1	28F	8/13	7:04	335Te
29	SES	1	CA	N	2104	we	P	1	29P	5/13	7:06	335%
30	SES	(	CA	M	2104	WC	P		30P	5/13		3357
.31	SES	1	BA	IN	2168	BF	2	(	3 <b>9P</b>	5/13	7:11	3357
<u> </u>	SES	l	BA	IN	2168	BF	F	•	31F	5/13	7/12	335
3Ղ	SES	1	CR	17	2159	DW	P	1	32 P	5/13	7:15	3357
32	SES	li_	CR	7	2159	PM	F	Î	32F	5/13	7:16	335
33	SES		KI	IN	2096	KC	P	1	33P	5/13	7:19	335

Clark: Planview -	Old Bothpiac	CSD		Laboratory Name: PloeNX		Dete	Time	Method Of Analysis
Building Name and Address Stratfind Race	33 Besterd A	Rd. Phon	unen	Ansiyzed By			I	
ES	NY 11803		I	QC By		<u> </u>	1	Lead
Samular's Name;	Com Planter	<i>1</i> ~		Turnaround Time:		,	·	
Semalar's Simuture:	KA	~			ncguire@jcbroderick.com	1		
Parlinguished by:	Received Br:	Dates	Time:	Special Instructions:	Analyze Flush Samples (F) O	NLY when	Primary Sar	mple exceeds 20mbb
- Kang								

CParadire 5/17/16 15/2

Lead In Water Chain of Custody Form Page of 0f Date: 5/13/16

JCB#/6-344/5 (SES)

200 N/C

Map Location	Building	Floor	Functional Space	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	DOTTI TID (1 ADD)		20	
	Code		Code	,	AIRIGAID	Outlet Type	Printal y/ Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
33	SES	١	KI	IN	2096	KC	F	<u> </u>	33F	5/13	7:20	3357
34	SES	l	GY	IN	2133	DW	P	1	34P	5/13	7-21	3357
34	SES	1	Gy	IN	2133	DW	F	1	34 <i>F</i>	5/13	1:22	3357
35	SES	1	NO	17	2148B	NS	P	ı	35P	5/13	7;23	3357
35	SES	j	NO	IN	2148B	NS	P	1	35F	5/13	7.23	3358
36	SES	(	HA	BY	2114	DW	Р	(	36 P	5/13	7.25	3358
36	SES	١	HA	BY	2114	DW	F	í	36 F	5/13	7:25	3358
37	SES	1	<b>BR</b> FA	IN	2110	BACF	P	1	37 P	5/13	フ・27	3388
37	SES	l	CE FA	2	2110	CF	14	1	37 F	5/13	フィンフ	3358
38	SES	١	CR	IN	2112	DW/CF	P	1	38 P	5/13	7:28	33585
38	SES	١	CR	7	2112	DW/CF	F		38 F	5/12	7:28	33586
39	SES	1	CR	IN		DWG	P	i	39 P	5/13	7:30	3358

Chant: Plajayra — ( Building Name and Address  Stratford Rd  ES	Old Bellipse 33 Benford NY 1180		ZINUMN	Laboratory Name: PLOENY Analyzed By QC By	Date	Yima	Method Of Analysis
Sameler's Name; Sameler's Standare; Pallocatabled By:	Kayin Manden	Dete:	Time;	Turnaround Time: Soules Email Report to: emcguire@icbroderick.com  Special Instructions: Analyze Flush Samples (F)	ONLY whe	en Primary S	ample exceeds 20pbb
100	Claradi	ne ne	SITI				

Lead In Water Chain of Custody Form

JCB#: 16-34415

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
39	SES	1	CR	7	2117	DW/CF	F	}	39F	5/13	7:30	33588
40	56 S	l	CL	IN	2116A	DW/CF	?	l	40 P	5/13	7:31	33589
40	SES	Į	CR	IN	2116A	DW/CF	F	(	40 F	57/13	7/31	33590
41	ses	Ì	CR	M	2120	DW/CF	P	i	410	5/13	7:33	33591
41	SES	ì	CL	IN	2120	DWGF	F	l	MF	5/17	7:33	33592
42	5ES	1	CR	N	2121	DWCF	7	1	421	5/13	7:34	33593
42	SES	1	CR	M	2121	DW/CF	Ŧ	1	1942F	5/13	7:34	33594
43	<u> 365</u>	i	CR	M	2124	OW/CF	P	1	43P	5/17	7:36	33575
43	SES	Ì	CR	M		DW/CF	F	1	43 F	5/13	7:36	33596
44	SES	)	CR	IN	2123	DWCF	P	Í	YYP	5/13	7:37	33597
44	SES	1	CR	IN	2123	DWCF	F	١	44F	5/7	7:37	33598
45	SES	2	CR	12	3039	DWGF	P	1	45 P	5/13	7:38	335 79

Chants Pkinnen -0)		D		Laboratory Hause:	Local of	Date	Time	Method Of Analysis
Building Name and Address	33 Barthard Ro	. Alayarer	,	Analyzed by	. 1		1	T 777
Strafard Road	N 11803	. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		QC by				1 /
ES	$ \mathcal{M}   \mathcal{W}  >$						-	- Lead
				instructions to the Labor	ntery			
Samular's Name :	Kev. Markent			Turnaround Time:	tand and			
Sempler's Signature:	KAZ			Email Report to:	emcguire@jcbrode	rick.com		
Pollomiched Dr.	Received Ibr:	Date: 11	ma:	Special instructions:	Analyze Flush S	amples (F) ONLY whe	n Primary Sa	imple exceeds 20pbb
$\mathcal{U}(\mathcal{L}_{\bullet})$								

Charadite 5/17/16 1512

#### Lead In Water Chain of Custody Form

Page S of 18

JCB#: 16-34415 (SES)

200N/c

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
45	SES	2	CR	7	3039	CF/DW	F	1	45F	5/13	7;38	3360K
46	SES	2	CR	IN	3036	CF/DW	P	1	46P	5/13	7140	3360
46	SES	2	CR	IN	3036	CF/DW	F	ĺ	46F	5/13	7540	3360
47	SES	2	CR	IN	3034	CF/PW	P	i	479	5/13	7:41	3360
47	SES	2	CR	IN	3034	CF/OW	f	1	471=	5/13	7141	3360
48	SES	2	Ck	IN	3032	CP/DW	P	J	488	5/13	7;43	3360
48	SES	2	CR	IN	3032	CF/pw	12	1	48F	5/13		3360
49	SES	2	CR	IN	3030	CF/ DW	P	1	499	5/13		3360
49	SES	2	CR	M	3030	CF/DW	F		49 F	5/13		3360
20	SES	2	CR	10	3028	CF/DW	P	l	50 P	5/13	7:46	3360
50	SES	2	CR	IN	3028	CF/pW	F	1	50 F	5/13	7146	33610
51	SES	2	CR	IN	3026.	CF/PW	P	ι	517	5/13		3361

chent: Planview - 0	110 Bothpage o	CSD		Laboratory Name: Phoeni	ð	Date	Time	Method Of Analysis
Stratord hand ES	\$ 5 Beg*~	d Rd. Plasn	vrew	Analyzed By QC By				Lead
ES Semplor's Name:	NY 11803			instructions to the Laborator				
Samalar's Siesstere:	Kon Manden			Turnaround Time: 5 For Email Report to:	emcguire@jcbroderick.com	7		
Information by	Pacetred Bro	Deter	Time:	Special Instructions:	Analyze Flush Samples (F)	ONLY whe	n Primary Sa	ample exceeds 20pbb
New	<b></b>							

Chadire 5/17/16 15/2

#### Lead In Water Chain of Custody Form

Page of 0 Date: 5/13/16

JCB#: 16-34415 (SES)

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
51	SES	2	CR	M	3026	CE/DW	F	1	51F	5/13	フィケフ	33612
52	SES	2	CR	IN	3022	CF/W	P	1	SZP	5/13	7:48	3361
52	SES	2	CR	IN	3022	ef/DN	F	ſ	52P	5/13	7:48	33614
53	565	2	CR	IN	3024	CF/IDW	P	١	53P	5/13	7:50	3361 E
53	SES	2	CR	IN	3024	CI=/DW	F	1	53f	5/13	7:50	3361
54	XS	2	CR	IN	3020	CF/DW	P	(	574P	5/13	7151	3361
<b>इ</b> प	SES	2	CR	IN	3020	CF/DW	F	1	54F	5/13	7:51	3361
55	SES	2	HA	BY	3014	DW	P	1	55 P	5/13	7,52	33619
55	SES	2	HA	ВУ	3014	DW	F		55F	5/13	7152	3362
56	SES	2	CR	M	3015	CF/OW	P	ſ	567	5/13	7:54.	3362
56	SES	2	CR	7	3015	CP/DW	11	1	56 F	5/13	7:54	3362
<i>5</i> 7	Ses	2	CR	IN	3053	CF	P		57 P	5/13	7:56	3362

Chart: Playmen - 0	18 Bellove C.	J D		Laboratory Name: Physic	νίχ	Date	Time	Method Of Analysis
Strafard Rand	33 Bedford Lo	). Phin	NEW .	Analyzed By QC By				1 / 1
ES	NY 11 FO:	3				<u> </u>	<u> </u>	Lead
Samular's Hame;	Ken Marken J.		···	Instructions to the Laborator Turnaround Time: 570		1		
Semalar's Signature:	(C)		•	Email Report to:	emcguire@jcbroderick.com	1		
Informated by	Bacelyeed By:	Date:	Time:	Special Instructions:	Analyze Flush Samples (F) O	NLY when	Primary Sa	ample exceeds 20pbb
	<b>/</b>		<u> </u>					
	Charactina	5	17/16	1512				

#### Lead In Water Chain of Custody Form

Page 0 of 13

JCB#: 16-34415 (SES)

200 N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
57	SES	2	CR	17	3053	CF	F	ł	57F	5/13	7:56	33621
58	SES	2	CR	17	3055	CF	P	1	58P	5/13	フングフ	33625
58	SES	2	CR	N	3055	(4	F	1	5-8F	5/13	7:57	33626
59	SES	2	CR	IN	3061	CF	P	)	59P	5/13	7:58	3362
59	SES	2	CR	IN	3061	LF	P	)	59F	5/13	7:35	33428
60	SES	2	CR	12	3063	CF	P	1	60P	5/13	7:59	33629
60	SES	2	CR	ÌA	3063	(P	4	1	60F	5/13	7:57	33630
61	SES	2	CR	ir	3065	CP	P	1	619	5/13	8:00	33631
61	SES	2	CR	ìn	3065	CF	P	1	61F	5/13	8:00	33632
62	SES	2	HA	4	3060	DU	Die P	J	62 P	5/13	80Z	33633
62	SES	2	HA	Ly	3060	DU	F	1	62F	5/13	an s	33434
63	SES	2	CR	12	3067	(F	P	1	63P	5/13	- ()	33639

Chant: Phynyrer - C Building Home and Address Strafferd Road	33 Bedford Re	CSD N. Phinno	٠,	Laboratory Name: Placix Analyzed By QC By	Date	Time	Method Of Analysis
Es	NS 1180	2		Instructions to the Laboratory			Lead
Someter's Name; Someter's Signature;	Kon Madendo			Turneround Time: Standard  Emeil Report to: emcguire@jcbroderick.com		\	
Adamshed Br.	Received By:	Dete: T	lme;	Special Instructions: Analyze Flush Samples (F	) ONLY whe	en Primary S	ample exceeds 20pbb

Charadine 5/17/16 1512

Lead In Water
Chain of Custody Form

JCB#: 16-34415 (SES)

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
63	SES	2	CR	5	3067	CF	F		63F	5/13	8:04	33634
64	SES	2	CR	50	3061	CF	ρ	1	649	5/13	8:05	33637
64	SES	2	CR	10	3069	CF	F	}	64F	5/13	9805	33638
65	SES	2	CR	1,	3071	CR	ρ	i	65P	F/13	@806	33639
\$5	SES	Z	CR	1	3071	CF	F	1	65F	5/13	<b>4</b> 806	33640
66	SES	2	CR	in	3073	CF	P	}	66 P	5/13	8.07	33641
66	SES	2	CR	۱۸	3073	CF	F	}	66F	5/13	8:07	33642
67	SES	7	CR	آم	3075	CF	P	1	67P	5/13	8.08	33643
67	SES	2	CR	in	3075	CF	F	1	67F	5/13	8:08	33641
68	SES	2	CR	in	3082	CF	P	(	68P	5/13	8:09	336U
68	SES	2	CR	ľ۸	3082	CF	F	}	68F	5/13	8:09	33641
69	SES	2	HA	6)	3082	D~	P	)	69P	5/13	8:10	3364

	OH Bethorse	CSD		Laboratory Name: PLOS	NX	Date	Time	Method Of Analysis
Stratford Road	33 Boothard	Rd. Plan	which	Analyzed By QC By			-	Lead
ES	NY 11803			Instructions to the Laborator	<u> </u>			200
Samular's Name:	Kein Maden	<b>/</b>		Turnaround Time: Store	land			
Sampler's Signature:	CAS			Email Report to:	emcguire@icbroderick.com	1		
Poliosuished Dr.	Received By:	Date:	Time:	Special Instructions:	Analyze Flush Samples (F) (	ONLY wher	Primary S	ample exceeds 20pbb
14								

cauadire 5/17/16 (512

#### Lead In Water **Chain of Custody Form**

JCB#: 16-344/3 (SES)

200 1

***	Building		Functional Space					<del></del>	<del> </del>	т	20	NU
Map Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
69	SES	2	<r< td=""><td>10</td><td>3252</td><td>CF</td><td>F</td><td>1</td><td>69F</td><td>5/13</td><td>8:10</td><td>336ei</td></r<>	10	3252	CF	F	1	69F	5/13	8:10	336ei
70	SES	2	CR	in	3077	CF	P	1	708	5/13	8:11	3364
70	SES	2.	CR	,	3077	F	F	1	70F	\$/13	8:11	3369
71	SES	Z	(R	<u> </u>	3079	CF	ρ	1	719	5/13	8:12	336
71	SES	2	(R	5~	3079	(P	P	1	715	5/13	8:12	3369
												200
								-				
:												

Came: Planter - OH				Laboratory Name: Phoen	ν.Χ.	Date	Time	
Building Name and Address  Straferd	33 Bod Red A	Rd Plany	(b) ~	Analyzed By	· ·	-	1 100	Method Of Analysis
15/18-14		11803		QC By				Lod
Sanahar's Name:				instructions to the Laborator	7			
Samuelar's Signature:	Kovin Mande	مركوب		Turnaround Time: 5+c	2-2	ר		
	AAC	<del></del>		Email Report to:	emcguire@jcbroderick.com	1		
We a	Bestved by	Date:	Time:	Special Instructions:	Analyze Flush Samples (F) O	NLY when	Primary Sa	imple exceeds 20pbb
rec								

Charadine 5/17/16 15/2



Monday, May 23, 2016

Attn: Mr Ed McGuire J C Broderick & Associates, Inc. 1775 Express Dr N Hauppauge, NY 11788

Project ID: 16-34415

Sample ID#s: BN33565 - BN33567, BN33569 - BN33571, BN33573, BN33575, BN33577,

BN33579, BN33581, BN33583, BN33585, BN33587, BN33589, BN33591, BN33593, BN33595, BN33597, BN33599, BN33601, BN33603, BN33605, BN33607, BN33609, BN33611, BN33613, BN33615, BN33617, BN33619, BN33621, BN33623, BN33625, BN33627, BN33629, BN33631, BN33633, BN33635, BN33637, BN33639, BN33641, BN33643, BN33645, BN33647,

BN33649, BN33651

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Time</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "By" below					

P.O.#:

aboratory Data SDG ID: GBN33565

Phoenix ID: BN33565

Project ID: 16-34415

Client ID: 26 SES 1 CA IN 2095 WC 26P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK AG/TH/E	E200.5 s _F E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 1 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u> <u>Tim</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:01			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "By" below					

P.O.#: Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33566

Project ID: 16-34415

Client ID: 27 SES 1 CA IN 2095 WC 27P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Cu		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:03
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33567

Project ID: 16-34415

Client ID: 28 SES 1 KI IN 2096 KC 28P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:06
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

SDG ID: GBN33565

Phoenix ID: BN33569

Project ID: 16-34415

Client ID: 29 SES 1 CA IN 2104 WC 29P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:08 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

SDG ID: GBN33565

Phoenix ID: BN33570

Project ID: 16-34415

30 SES 1 CA IN 2104 WC 30P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/19/16 E200.5 Completed 05/18/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 5 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:11
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33571

Project ID: 16-34415

Client ID: 31 SES 1 BA IN 2168 BF 31P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	nple Information Custo		<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:15
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

Laboratory Data

**SDG ID: GBN33565** 

Phoenix ID: BN33573

Project ID: 16-34415

Client ID: 32 SES 1 CR IN 2159 DW 32P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 FE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 7 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Custody II			<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:19
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

aboratory Data SDG ID: GBN33565

Phoenix ID: BN33575

Project ID: 16-34415

Client ID: 33 SES KI IN 2096 KC 33P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:21
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33577

Project ID: 16-34415

Client ID: 34 SES 1 GY IN 2133 DW 34P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 46 Ver 1







SDG ID: GBN33565

Phoenix ID: BN33579

# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:23
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Client ID: 35 SES 1 NO IN 2148B NS 35P

16-34415

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 FE200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:25
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzod by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33581

Project ID: 16-34415

Client ID: 36 SES 1 HA BY 2114 DW 36P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 11 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:27 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

aboratory Data

SDG ID: GBN33565

Phoenix ID: BN33583

Project ID: 16-34415

37 SES 1 FA IN 2110 CF 37P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead 0.002 0.001 mg/L 0.015 05/19/16 E200.5 Completed 05/18/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 12 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>			
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:28		
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12		
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow				

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33585

Project ID: 16-34415

Client ID: 38 SES 1 CR IN 2112 DW/CF 38P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 sFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 13 of 46 Ver 1







# **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:30
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33587

Project ID: 16-34415

Client ID: 39 SES 1 CR IN 2117 DW/CF 39P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/19/16 05/18/16	LK AG/TH/E	E200.5 BFE200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 14 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:31 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

**Laboratory Data** 

SDG ID: GBN33565

Phoenix ID: BN33589

Project ID: 16-34415

Client ID: 40 SES 1 CR IN 2116A DW/CF 40P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/19/16 E200.5 Completed 05/18/16 AG/TH/BFE200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:33
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33591

Project ID: 16-34415

Client ID: 41 SES 1 CR IN 2120 DW/CF 41P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 16 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:34 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by:

see "By" below

aboratory Data

SDG ID: GBN33565

Phoenix ID: BN33593

Project ID: 16-34415

42 SES 1 CR IN 2121 DW/CF 42P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Reference Βv Lead 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 17 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:36
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

**Laboratory Data** 

SDG ID: GBN33565

Phoenix ID: BN33595

Project ID: 16-34415

Client ID: 43 SES 1 CR IN 2124 DW/CF 43P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:37
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33597

Project ID: 16-34415

Client ID: 44 SES 1 CR IN 2123 DW/CF 44P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23. 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 19 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:38
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33599

Project ID: 16-34415

Client ID: 45 SES 2 CR IN 3039 DW/CF 45P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 20 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Information		<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:40
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33601

Project ID: 16-34415

Client ID: 46 SES 2 CR IN 3036 CF/DW 46P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 21 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:41
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33603

Project ID: 16-34415

Client ID: 47 SES 2 CR IN 3034 CF/DW 47P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 22 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:43 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by:

see "By" below

aboratory Data

SDG ID: GBN33565

Phoenix ID: BN33605

16-34415 Project ID:

48 SES 2 CR IN 3032 CF/DW 48P Client ID:

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Reference Βv Lead 0.002 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 23 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Cus		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:45
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

aboratory Data SDG ID: GBN33565

Phoenix ID: BN33607

Project ID: 16-34415

Client ID: 49 SES 2 CR IN 3030 CF/DW 49P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 24 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information Cus		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:46
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33609

Project ID: 16-34415

Client ID: 50 SES 2 CR IN 3028 CF/DW 50P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 25 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:47
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Duck Doguceti	Ctondord	Analyzad by	a a a IID. II la al acce		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33611

Project ID: 16-34415

Client ID: 51 SES 2 CR IN 3026 CF/DW 51P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 26 of 46 Ver 1







SDG ID: GBN33565

Phoenix ID: BN33613

### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	on <u>Custody Information</u>		<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:48
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Project ID: 16-34415 Client ID: 52 SES 2 CR IN 3022 CF/DW 52P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.005 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 27 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Information			<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:50
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Buch Boguest	Standard	Applyzed by	ooo IIDull balaur		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33615

Project ID: 16-34415

Client ID: 53 SES 2 CR IN 3024 CF/DW 53P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 28 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:51
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" helow		

aboratory Data

SDG ID: GBN33565

Phoenix ID: BN33617

Project ID: 16-34415

Client ID: 54 SES 2 CR IN 3020 CF/DW 54P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 29 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 7:52 Matrix: Collected by: KM Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33619

Project ID: 16-34415

Client ID: 55 SES 2 HA BY 3014 DW 55P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Reference Βv Lead 0.005 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 30 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:54
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Bv" helow		

P.O.#:

**Laboratory Data** 

**SDG ID: GBN33565** 

Phoenix ID: BN33621

Project ID: 16-34415

Client ID: 56 SES 2 CR IN 3015 CF/DW 56P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 31 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:56
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33623

Project ID: 16-34415

Client ID: 57 SES 2 CR IN 3053 CF 57P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 32 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	<u>nation</u>	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	7:57
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

SDG ID: GBN33565

Phoenix ID: BN33625

Project ID: 16-34415

Client ID: 58 SES 2 CR IN 3055 CF 58P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.006 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 33 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

**Laboratory Data** 

SDG ID: GBN33565

Phoenix ID: BN33627

Project ID: 16-34415

Client ID: 59 SES 2 CR IN 3061 CF 59P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.008 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 34 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Analyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33629

Project ID: 16-34415

Client ID: 60 SES 2 CR IN 3063 CF 60P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 35 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33631

Project ID: 16-34415

Client ID: 61 SES 2 CR IN 3065 CF 61P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 36 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#: Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33633

Project ID: 16-34415

Client ID: 62 SES 2 HA BY 3060 DW 62P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 37 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

**Laboratory Data** 

SDG ID: GBN33565

Phoenix ID: BN33635

Project ID: 16-34415

Client ID: 63 SES 2 CR IN 3067 CF 63P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 38 of 46 Ver 1







**Analysis Report** 

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/13/16 Matrix: Collected by: KM 6:59 Received by: Location Code: JC-BROD SW 05/17/16 15:12 Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33637

Project ID: 16-34415

Client ID: 64 SES 2 CR IN 3069 CF 64P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Βv Reference Lead < 0.001 0.001 mg/L 0.015 05/20/16 LK E200.5 Completed 05/18/16 TH/UU E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 39 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33639

Project ID: 16-34415

Client ID: 65 SES 2 CR IN 3071 CF 65P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 40 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN33565

Phoenix ID: BN33641

Project ID: 16-34415

Client ID: 66 SES 2 CR IN 3073 CF 66P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.002 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 41 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Puch Poquect:	Standard	Applyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN33565

Phoenix ID: BN33643

Project ID: 16-34415

Client ID: 67 SES 2 CR IN 3075 CF 67P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23. 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 42 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#: Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33645

Project ID: 16-34415

Client ID: 68 SES 2 CR IN 3082 CF 68P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 43 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

P.O.#:

Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33647

Project ID: 16-34415

Client ID: 69 SES 2 HA BY 3082 DW 69P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 44 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12
Rush Request:	Standard	Analyzed by:	see "By" below		

Laboratory Data

SDG ID: GBN33565

Phoenix ID: BN33649

Project ID: 16-34415

Client ID: 70 SES 2 CR IN 3077 CF 70P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.005 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 45 of 46 Ver 1







### **Analysis Report**

May 23, 2016

FOR: Attn: Mr Ed McGuire

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information		Custody Inforn	<u>nation</u>	<u>Date</u> <u>Ti</u>				
Matrix:	DRINKING WATER	Collected by:	KM	05/13/16	6:59			
Location Code:	JC-BROD	Received by:	SW	05/17/16	15:12			
Rush Request:	Standard	Analyzed by:	see "By" below					

P.O.#:

aboratory Data SDG ID: GBN33565

Phoenix ID: BN33651

Project ID: 16-34415

Client ID: 71 SES 2 CR IN 3079 CF 70P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/20/16 05/18/16	LK TH/UU	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.)
MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

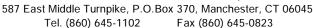
#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director


May 23, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 46 of 46 Ver 1



#### Environmental Laboratories, Inc.





CDC LD . CDN22E4E

## QA/QC Report

May 23, 2016

### OA/OC Data

Iviay 23, 2010			Q7 V Q O Data						2DG I.D.: GBN33262					
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 346077A (mg/L), QC Sample No: BN33558 (BN33589)														
ICP Metals - Aqueous														
Lead Comment:	BRL	0.001				97.6			90.4			85 - 115	20	
Additional: LCS acceptance range	e is 85-11	5% MS	acceptance	e range 7	75-125%									
QA/QC Batch 346074A (mg/L),	QC Sar	nple No	: BN3356	5 (BN33	565, BI	N33566	5, BN335	67, BN	133569)	)				
ICP Metals - Aqueous														
Lead	BRL	0.001				96.5			95.7			85 - 115	20	
Comment:														
Additional: LCS acceptance range	e is 85-11	5% MS	acceptance	e range 7	75-125%									
OA/OC Datab 24/07FA (mm/l) OC Commis No. DN22F70 (DN22F71 DN22F72 DN22F77 DN22F77 DN22F77 DN22F77 DN22F77 DN22F77														

QA/QC Batch 346075A (mg/L), QC Sample No: BN33570 (BN33570, BN33571, BN33573, BN33575, BN33577, BN33579, BN33581, BN33583, BN33585, BN33587)

ICP Metals - Aqueous

BRL 0.001 96.7 85.0 85 - 115 20 Lead

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Batch 346091 (mg/L), QC Sample No: BN33591 (BN33591, BN33593, BN33595, BN33597, BN33599, BN33601, BN33603, BN33605, BN33607, BN33609)

ICP Metals - Aqueous

Lead BRL NC 100 100 0.001 < 0.001 < 0.001 85 - 115 20

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Batch 346091A (mg/L), QC Sample No: BN33611 (BN33611, BN33613, BN33615, BN33617, BN33619, BN33621, BN33623, BN33625, BN33627, BN33629)

ICP Metals - Aqueous

Lead BRL 0.001 100 96.3 85 - 115 20

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Batch 346092 (mg/L), QC Sample No: BN33631 (BN33631, BN33633, BN33635, BN33637, BN33639, BN33641, BN33643, BN33645, BN33647, BN33649)

ICP Metals - Aqueous

BRL 0.001 0.001 < 0.001 97.5 102 85 - 115 20

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Batch 346092A (mg/L), QC Sample No: BN33651 (BN33651)

ICP Metals - Aqueous

Lead BRL 0.001 97.5 102 85 - 115 20

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

SDG I.D.: GBN33565

% RPD % Blk Sample Dup Dup LCS LCSD LCS MS MSD MS Rec Blank RL Result Result RPD % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 23, 2016

Monday, May 23, 2016 Criteria: None

State: NY

# **Sample Criteria Exceedences Report**

**GBN33565 - JC-BROD** 

RLAnalysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

^{***} No Data to Display ***



### **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



# **Analysis Comments**

May 23, 2016 SDG I.D.: GBN33565

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

# nelac

# **NY Temperature Narration**

May 23, 2016

SDG I.D.: GBN33565

The samples in this delivery group were received at 20°C. (Note acceptance criteria is above freezing up to 6°C)

1803 NY 11803 Tames Tames Tames Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base Special base

Plania and Address 33 Botherd Rd. Phunen

-11-05 -2-0340 0104651	arming andw Y IMO	Analyze Flush Samples (F)	seed Instructions:
		emcguire@icbroderick.com	ot hege fiew
		الموسمانسها	: :emiT bnuoremu
		/ AND	and of a stable of
6007			λε <b>϶</b> λ
Lead -			yc by Ymelysed by

c.,	600	Ι.,	61.10		1	1 ,			· T ·	T	_	T	,
SL			21/5	336	1	ਰ	7X	2,602	N	KI		538	દૃદ્
hL		91:1	5113	325	!	7	MCI	5128	121	CK	1	538	८६
	-988	Slic	81/5	326	1	d	MQ	6517	NI	रा	1	S3S	7.6
	588	71/2	E1/25	٦١٤	· ·	Ь	49	8917	NI	ASI	1	SƏS	18
	LSEE	11.6		908	}	4	19	3917	NI	Ag	1	Sas	15.
	LSEE	1	E1/5	308	)	9	MC	hoi7	NI	CA	J	538	OE
	9BEE		81/5	795	}	9	MC	h01Z	M	A)	١	535	50
	NS88	1)(7 . C	8/13	78t	1	1	1771	960T	NI	KI	1	535	58
-	೨೪೯೯	0072	81/5	786	1	8	KC	2005	M	KI	1	535	700
	<u> 1988</u>	' -	5113	dLT.	1	d	MC	2095	41	AD	1	525	LZ
	?33 <i>2</i> 1°		2/13	297	1	را	MC	Shot	11	AD	}	535	97
Y	ાગક્ટહ	85:9	SI/S	752	1	邧	SN	上ので	NI	OU	l	525	57
	Result	9miT 9lqms2	Sample Date	Jara/di ajtto8	Number	Primary/Flush	Outlet Type	AHERA ID	IN/BA	Functional Space Space	Hoor	Buibliu8 9boD	Map Location
	0	7007							<u></u>		I		<u> </u>
							, '403	•					

Date: 5/3/16

Lead In Water Chain of Custody Form

7/hhC-2/ 12

J.C. Broderick Associates
1775 Expressway Dr. N.
Hauppauge, NY 11788
Contact: Ed McGuire
emcguire@jcbroderick.com

Lead In Water
Chain of Custody Form

Page of of Date: 5/13/16

JCB#/6-344/5 (SE)

DONIC

	Building	Γ	Functional Space	1		<u> </u>	<u> </u>		Τ		20°	, , (0
Map Location	Code	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
33	SES	١	KI	IN	2096	KC	F	i	33F	5/13	7:20	3357
34	SES	1	GY	IN	2133	DN	P	1	34P	5/13	7:21	3357
34	SES	1	Gy	IN	2133	DW	F	1	34 <i>F</i>	5/13	7:22	3357
35	SES	1	NO	111	2148B	NS	P	I	35P	5/13	7;23	3357
35	SES		70	IN	2148B	NS	P	ı	35F	5/13	7,23	3358
36	SES	-	HA	BY	2119	DW	Р	(	36 P	5/13	7.25	3358
36	SES	-	HA	BY	2114	DW	F	1	36 F	5/13	7:25	3358
37	SES	1	<b>EX</b> FA	IN	2110	BACF	\$	ł	37 P	5/13	プレフ	
37	SES	ł	CE FA	17	2110	CF	F	i	37 F	5/13	フィンフ	3358 3358
38	SES	)	CR	IN	2112	DW/CF	P	1	38 P	5/13	7:28	3358
38	SES	- 1	CR	17	2112	DW/CF	F	1	38 F	5/12	7:28	3358
39	SES	ı	CR	IN		DVYCF	P	i	39 P	5/13	7:30	3358

Client: Plajavicu - ( Building Name and Address Stratford Rd ES	33 Besterd NY 1180	-	UNIMA	Laboratory Rame: Phoen's Amelyzed By QC By	Date	Time	Mathed Of Analysis
Sampler's Neme; Sampler's Signature;	Kayin Mande	mhor		Turnaround Time: Scale among ire@icbroderick.com	7		
Refinantished by:	Received By:	Dete:	Time;	Special Instructions: Analyze Flush Samples (F) C	NLY wher	n Primary S	ample exceeds 20pbb

Charadine 5/17/16 15/2

Lead In Water Chain of Custody Form Page ______ of ______ Date: ______ 5/13/16

JCB#: 16-34415

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
39	SES	١	CR	12	2117	DW/CF	F	)	39F	5/13	7:30	33588
40	565	l	CR	IN	2116A	DW/CF	P	l	40 P	5/13	7:31	33589
40	SES	l	CR	IN	2116A	DW/CF	F	1	40 F	57/13	7(3)	33590
41	ses	į	CR	IN	2120	DW/C=	P	i	410	5/13	7133	33591
41	SES	ì	CL	iN	2120	DWG	F	l	YIF	5/13	7:33	33598
42	SES	1	CR	N	2121	DWCF	P	1	421	5/17	7:34	33593
42	SES	1	CR	M	2121	DW/CF	F	í	1942F	5/13	7:34	33594
43	<u> 365</u>	ì	CR	N	2124	OWCF	P	1	43 P	5/17	7:36	335 95
43	SES	l	CR	M		DW/CF	F	1	43 F	5/13	7:36	33596
44	SE S	)	CR	IN	2123	DNYCF	P	i	44P	5/13	7:37	33597
44	SES	1	CR	IN	2123	DWCF	F	\ \	44F	5/3	7.37	33598
45	SES	2	CR	2	3039	DWGF	P	l	45 P	5/13	7:38	335 99

	ld Belgine CS			Laboratory Hamo: Phoenix	Date	Time	Method Of Analysis
Building Name and Address	33 Batterd Ro	1. Aan	الماحادا	Analyzed By		T	7
Straford Road	N/11803			QC By			I Lead
ES	N1 11 80 >						- CON
-	<u></u>			instructions to the Laboratory			
Sampier's Name:	Key Markent			Turneround Time: STandard			
Semeler's Signature:	163			Emeil Report to: emcguire@jcbroderick.com			
Relinguished By:	Pecalved By:	Date:	Time:	Special Instructions: Analyze Flush Samples (	F) ONLY whe	n Primary S	ample exceeds 20mhb
- $(M, )$						, , , , ,	pic exceeds 20pbs
1(1/2)		1					

Caradire 5/17/16 1512

# Lead In Water Chain of Custody Form

Page 5/3/6

JCB#: 16-34415 (SES)

Г	<u></u>	<del>r</del>	I		· · · · · · · · · · · · · · · · · · ·		T	<del></del>			20	ONIC
Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
45	SES	2	CR	17	3039	CF/DW	F	1	45F	5/13	7;38	33600
46	SES	2	CR	IN	3036	CF/DW	P	1	46P	5/13	7140	33601
46	SES	2	CR	IN	3036	CF/DW	F	1	46F	5/13	7540	33602
47	SES	2	CR	IN	3034	CF/PW	P	l	479	5/13	7:41	33603
47	SES	2	CR	IN	3034	CF/DW	F	1	475	5/13	7:41	33604
48	SES	2	Ck	IN	3032	CP/DW	P	)	488	5/13	7;43	33605
48	SES	2	CR	IN	3032	CF/pw	F	١	48F	5/13	7,43	33606
49	SES	2	CR	IN	3030	CF/DW	P	1	499	5/13	7:45	33607
49	SES	2	CR	M	3030	CF/DW	F	1	49 F	5/13	_ ,	33608
20	SES	2	CR	12	3028	CF/DW	P	t	50 P	5/13	7:46	33609
50	SES	2	CR	IN	3028	CF/DW	F	1	56 F	5/13	7146	33610
51	SES	2	CR	IN	3026.	1 0 / 1 /	P	ι	519	5/13	7;47	33611

	10 Bothpage C	LD		Laboratory Name: Phoen	Laboratory Name: Polici			Method Of Analysis
Straford Road ES	33 Badford NY 11803	Rd. Pl	anarem	Analyzed By QC By		Date	Time	Lead
Sampler's Name; Sampler's Signature;	Kan Madana	h-		Turnaround Time: 5/0 Email Reportto:	emcguire@jcbroderick.com	1		
Indicational Pri	Passived By:	Dete:	Time:	Special Instructions:	Analyze Flush Samples (F) C	NLY when	Primary Sa	imple exceeds 20pbb
	Chuadi	re 6	117/16	(5) <del>2</del> -				

# Lead In Water Chain of Custody Form

Page of Of Date: 5/13/16

JCB#: 16-34415 (SES)

20°N/

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
51	SES	2	CR	M	3026	CE/DW	F	1	51F	5/13	7:47	33612
52	SES	2	CR	IN	3022	CF/DW	P	1	52P	5/13	7:48	33613
\$2	SES	2	CR	IN	3022	ef/DW	F	ſ	52F	5/13	7,48	33614
53	565	2	CR	IN	3024	CF/IDW	P		53P	5/13	7:50	33615
53	SES	2	CR	N	3024	CF/DW	F	1	53F	5/13	7150	33616
54	ES	2	CR	111	3020	CF/DW	ρ	(	54P	5/13	7151	33617
54	SES	2	CR	IN	3020	CF/DW	F	1	54F	5/13	7:51	33618
55	SES	2	HA	βY	3014	DW	P		55 P	5/13	7,52	33619
55	SES	2	HA	ВУ	3014	DW	F	_	55F	5/13	7152	33620
56	ses	2	CR	7	3015	CF/ON	P	1	56 P	5/13	7:54	33621
56	SES	2	CR	7	3015	CP/DW	(F	ĺ	56 F	5/13	7154	33622
37	SES	2	CR	11	3053	CF	P		57 P	5/13	7:56	33623

Chant: Plajaview - O Building Name and Address Strafard Road ES	13 Bedford A NY 11 FO	d. Phi	NEW	Laboratory Name: PL Analyzed By QC By	<u>કલ્પે</u> ૪	Date	Time	Mothed Of Analysis
Samalar's Home; Samalar's Simaters; Patientished Dr.	Resired Br	J Dete:	Time:	Instructions to the Labora Turnaround Time: 5# Email Report to: Special Instructions:	ndere emcguire@jcbroderick.com Analyze Flush Samples (F) O	NLY wher	n Primary Sa	ample exceeds 20pbb
	Charadin	e 5	17/16	1512				

Lead In Water Chain of Custody Form Page 0 of 0

JCB#: 16-34415 (SES)

200 NO

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
57	SES	2	CR	17	3053	CF	F	1	57F	5/13	7156	33621
58	SES	2	CR	IN	3055	CF	P	1	58P	5/13	7:57	33625
58	SES	2	CR	71	3055	(1	F	1	58F	5/13	7:57	33626
59	585	2	CR	IN	3061	CF	P		578	5/13	7:58	3362
59	SES.	2	ch	IN	3061	LF	P	)	59F	5/13	7:38	33428
60	SES	2	CR	12	3063	CF	P	_	60P	5/13	7:59	33629
60	SES	2	CR	ìa	3063	(P	F	1	60F	5/13	7:57	33630
61	SES	2	CR	ir	3065	CF	P	1	61P	5/13	8:00	33631
61	SES	2	CR	ìn	3065	CF	C	1	61F	5/13	8:00	33632
62	SES	2	HA	- βγ	3060	DU	De P	1	62 P	5/13	80Z	33633
62	SES	2	HA	Ly	3060	DW	F	7	(ZF	5/13	an's	33434
63	SES	2	CR	10	3067	CF	P	1	63P	5/13	( ( )	33639

Chant: PhynView - C Building Name and Address		CID		Laboratory Masse: Placix	Date	Time	Method Of Analysis
Stratery Road	33 Bedford Re	y Plains	لمطا	Analyzed By			, ,
Es	NS 1180	9		QC By			Lead
Sampler's Name:	Kon Morden			Turnaround Time: STandard			
Sempler's Signature:		<b>—</b>	r	Email Report to: emcguire@icbroderick.com		\	
Intinguished By:	Received Dr.	Date:	Time:	Special Instructions: Analyze Flush Samples (F	ONLY when	Primary Sa	mple exceeds 20pbb
X (M2)		+					

Charadine 5/17/16 1512

#### Lead In Water Chain of Custody Form

Page // of 3

JCB#: 16-34415 (SES)

20°N/C

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
63	SES	2	CR	<u>ر</u>	3067	CF	f	1	63F	5/13	8:04	33634
64	SES	2	CR	5.	3067	CF	ρ	1	649	5/13	8:05	33637
64	SES	2	CR	10	3069	CF	۴	}	64F	5/13	9805	33638
65	SES	2	CR	1,	3071	CR	P	1	65P	F/13	@806	33639
65	SES	Z	CR	10	3071	CF	F	1	65F	5/13	A806	33640
66	SES	2	CR	ì	3073	CF	P	}	66 P	5/13	8.07	33641
66	SES	2	CR	۱۸	3073	CF	F	}	66F	5/13	8:07	33642
67	SES	7	CR	in	3075	CF	ρ	1	67P	5/13	8.08	33643
67	SES	2	CR	is	3075	CF	F	1	67F	5/13	8:08	33641
68	SES	2	CR	5.	3082	CF	P	(	68P	5/13	8:09	3364
68	SES	2	CR	În	3082	CF	F	}	68F	5/13	8:09	33649
69	SES	2	HA	6)	3082	Du	ρ	1	69P	5/13	8:10	336 U

Client: PRINCIPM -	Ob Bethorse	CSD		Laboratory Name: PLOCAIX		Date	Time	Method Of Analysis
Building Name and Address	33 Badford	Rd. Plani	revol	Analyzed By				<i>,</i> ,
Strafford Road		,	'	QC By				Lead
ES	NY 11803		- 1					
	<del> </del>			Instructions to the Laboratory				
Sempler's Name:	Kein Miden	<u> </u>		Turnaround Time: Storday	d			
Sempler's Signature:	CAST			Email Reportto:	emcguire@jcbroderick.com	1		
Polinguished By:	Received By:	Date: Tir	ne:	Special Instructions:	Analyze Flush Samples (F) (	ONLY when	Primary Sa	imple exceeds 20pbb
110								
1262								

Muddire 5/17/16 (512

#### Lead In Water **Chain of Custody Form**

Page 12 of 17
Date: 5/13/16

JCB#: 18-34413 (SES)

Building		Functional Space		<del></del>		1	<u> </u>		1	$\sim$	2/2
	Floor	Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
SES	2	<r< td=""><td>10</td><td>3252</td><td>(F</td><td>F</td><td>1</td><td>695</td><td>5/13</td><td>8:10</td><td>336el</td></r<>	10	3252	(F	F	1	695	5/13	8:10	336el
SES	2	CR	۲, ۲	3977	CF	P	1		<del></del>	<del> </del>	3364
SES	2	(R	ĵ	3077	F	F			<del></del>		3369
SES	Z	(R		3079	CF	P	1			8:12	3369
SEJ	2	(R	5~	3079	(F	P	1			8:12	3369
										0	ا يارو
	SES SES SES	SES 2 SES 2 SES 2 SES 2	Code Code  SES 2 (R  SES 2 (R  SES 2 (R  SES 2 (R	SES 2 (R In SES 2 (R In SES 2 (R In SES 2 (R In SES 2 (R In	SES 2 (R In 3087 SES 2 (R In 3077 SES 2 (R In 3077 SES 2 (R In 3077 SES 2 (R In 3079	SES 2 (R In 3082 (F SES 2 (R In 3077 (F SES 2 (R In 3077 (F SES 2 (R In 3077 (F SES 2 (R In 3079 (F	SES 2 (R In 3082 (F F SES 2 (R In 3077 (F P SES 2 (R In 3077 (F F SES 2 (R In 3079 (F P	SES 2 (R In 3082 (F F I SES 2 (R In 3077 (F P I SES 2 (R In 3077 (F F I SES 2 (R In 3077 (F P I SES 2 (R In 3079 (F P I	SES 2 (R In 3082 (F F I 69F SES 2 (R In 3077 (F P I 70P SES 2 (R In 3077 (F F I 70F SES 2 (R In 3079 (F P I 71P	SES 2 (R In 3082 (F F I 69F 5/13  SES 2 (R In 3077 (F P I 70F 5/13  SES 2 (R In 3077 (F F I 70F 5/13  SES 2 (R In 3077 (F P I 70F 5/13	Code   Floor   Code   IN/BY   AHERA ID   Outlet Type   Primary/Flush   Number   BOTTLE ID/LABEL   Sample Date   Sample Time

Chant: PKINICH - Old Building Name and Address Stratard	Redigine CSD  33 Badford Rd  NY 11		,	Laboratory Name: Plan. Analyzed by QC by	) X	Date	Time	Method Of Analysis
Man 1	Kovin Mande.	1	lime:	Instructions to the Laborator. Turneround Time: Street Email Report to: Special Instructions:		NLY wher	Primary Sa	ample exceeds 20pbb
X-CC	Cparadir	e 5	17/14	0 1512				



**Tuesday, May 17, 2016** 

Attn: Mr Steve Muller J C Broderick & Associates, Inc. 1775 Express Dr N Hauppauge, NY 11788

Project ID: 16-34415 OBS

Sample ID#s: BN31241, BN31243, BN31245, BN31247, BN31249, BN31251, BN31253,

BN31255, BN31257, BN31259, BN31261 - BN31263, BN31265, BN31267,

BN31269, BN31271, BN31273

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis/Shiller

**Laboratory Director** 

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	5:50
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN31241

Phoenix ID: BN31241

Project ID: 16-34415 OBS

Client ID: 1 OBS 1 CR IN 2005 DW P 1 1P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.005 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 1 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	5:53
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Bv" below		

P.O.#:

Laboratory Data SDG ID: GBN31241

Phoenix ID: BN31243

Project ID: 16-34415 OBS

Client ID: 2 OBS 1 NO IN 2009 CF P 1 2P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 2 of 18 Ver 1







**Analysis Report** 

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Information **Custody Information** Date Time DRINKING WATER 05/12/16 Matrix: Collected by: 5:56 Received by: Location Code: JC-BROD LB 05/12/16 14:30 Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u>

SDG ID: GBN31241

Phoenix ID: BN31245

Project ID: 16-34415 OBS

Client ID: 3 OBS 1 NO IN 2086 DW P 1 3P

RL/ DW Sec Parameter Result **PQL** DIL Units MCI Goal Date/Time Reference Βy Lead 0.001 0.001 mg/L 0.015 05/13/16 LK E200.5 Completed 05/12/16 TH E200.5/E200.7 **Total Metal Digestion** 

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 3 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Informa	ation	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	5:58
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duck Deguest	Ctondord	A so all see al levis			

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN31241

Phoenix ID: BN31247

Project ID: 16-34415 OBS

Client ID: 4 OBS 1 HA BY 2082 DW P 1 4P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 4 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:00
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Rv" helow		

P.O.#:

Laboratory Data SDG ID: GBN31241

Phoenix ID: BN31249

Project ID: 16-34415 OBS

Client ID: 5 OBS 1 HA BY 2076 DW P 1 5P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 5 of 18 Ver 1







SDG ID: GBN31241

Phoenix ID: BN31251

# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>tion</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:03
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30

Rush Request: Standard Analyzed by: see "By" below

Project ID: 16-34415 OBS
Client ID: 6 OBS 1 HA BY 2072 DW P 1 6P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 6 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inforn	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:05
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Rv" helow		

P.O.#:

**Laboratory Data** 

SDG ID: GBN31241

Phoenix ID: BN31253

Project ID: 16-34415 OBS

Client ID: 7 OBS 1 CR IN 2047 CF/DW P 1 7P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 7 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:08
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Buch Boguest	Standard	Analyzad by	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

P.O.#: Laboratory Data

SDG ID: GBN31241

Phoenix ID: BN31255

Project ID: 16-34415 OBS

Client ID: 8 OBS 1 CR IN 2044 CF/DW P 1 8P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.003 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 8 of 18 Ver 1







SDG ID: GBN31241

Phoenix ID: BN31257

# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Informa	<u>tion</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:10
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duck Deguest	Ctondord	A .a.a.l	UD U L - L		

Rush Request: Standard Analyzed by: see "By" below

Client ID: 9 OBS 1 CR IN 2043 CF/DW P 1 9P

16-34415 OBS

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.016	0.001	1	mg/L	0.015		05/13/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/12/16	TH	E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 9 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Informa	<u>tion</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:12
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duck Deguest	Ctondord	A .a.a.l	UD U L - L		

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data SDG ID: GBN31241

Phoenix ID: BN31259

Project ID: 16-34415 OBS

Client ID: 10 OBS 1 CR IN 2041 CF/DW P 1 10P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.005 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 10 of 18 Ver 1







SDG ID: GBN31241

Phoenix ID: BN31261

# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:15
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Puch Poquect:	Standard	Applyzed by:	ooo "Dy" bolow		

Rush Request: Standard Analyzed by: see "By" below

Client ID: 11 OBS 1 CR IN 2040 CF/DW P 1 11P

16-34415 OBS

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead	0.139	0.001	1	mg/L	0.015		05/13/16	LK	E200.5
*** Lead exceeds MCL levels *** Total Metal Digestion	Completed						05/12/16	TH	E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 11 of 18 Ver 1







SDG ID: GBN31241

Phoenix ID: BN31262

# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:15
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duch Doguest	Ctondord	Analyzad by	a a a IID. II la al acce		

Rush Request: Standard Analyzed by: see "By" below

Client ID: 11 OBS 1 CR IN 2040 CF/DW F 1 11F

16-34415 OBS

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.012 Completed	0.001	1	mg/L	0.015		05/16/16 05/16/16	LK CB/CB	E200.5 E200.5/E200.7

aboratory Data

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Project ID:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 12 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>tion</u>	Custody Inform	ation	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:18
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data SDG ID: GBN31241

Phoenix ID: BN31263

Project ID: 16-34415 OBS

Client ID: 12 OBS 1 CR IN 2038 CF/DW P 1 12P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 13 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:30
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

P.O.#:

Laboratory Data SDG ID: GBN31241
Phoenix ID: BN31265

Project ID: 16-34415 OBS

Client ID: 13 OBS 1 CR IN 2037 CF/DW P 1 13P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 14 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	<u>ation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:33
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duck Doguceti	Ctondord	Analyzad by	and IID. II hala		

Rush Request: Standard Analyzed by: see "By" below

<u>Laboratory Data</u>

SDG ID: GBN31241

Phoenix ID: BN31267

Project ID: 16-34415 OBS

Client ID: 14 OBS 1 HA BY 2030 DW P 1 14P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 15 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	Custody Inform	<u>nation</u>	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:35
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

Rush Request. Standard Analyzed by. See By

Laboratory Data

SDG ID: GBN31241

Phoenix ID: BN31269

Project ID: 16-34415 OBS

Client ID: 15 OBS 1 KI IN 2030 KC P 1 15P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 16 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	<u>ation</u>	<u>nation</u>	<u>Date</u>	<u>Time</u>	
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:40
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Rush Request:	Standard	Analyzed by:	see "Ry" helow		

Rush Request. Standard Analyzed by See By Delow

Laboratory Data

SDG ID: GBN31241

Phoenix ID: BN31271

Project ID: 16-34415 OBS

Client ID: 16 OBS 1 FA IN 1001 CF P 1 16P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	0.004 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK AG/TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### Comments:

P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 17 of 18 Ver 1







# **Analysis Report**

May 17, 2016

FOR: Attn: Mr Steve Muller

J C Broderick & Associates, Inc.

1775 Express Dr N Hauppauge, NY 11788

Sample Informa	ation_	Custody Inform	ation at ion	<u>Date</u>	<u>Time</u>
Matrix:	DRINKING WATER	Collected by:		05/12/16	6:45
Location Code:	JC-BROD	Received by:	LB	05/12/16	14:30
Duck Doguceti	Ctondord	Analyzad by	and IID: III hala		

Rush Request: Standard Analyzed by: see "By" below

.

Laboratory Data SDG ID: GBN31241

Phoenix ID: BN31273

Project ID: 16-34415 OBS

Client ID: 17 OBS 1 HA BY 1001 DW P 1 17P

Parameter	Result	RL/ PQL	DIL	Units	DW MCL	Sec Goal	Date/Time	Ву	Reference
Lead Total Metal Digestion	< 0.001 Completed	0.001	1	mg/L	0.015		05/13/16 05/12/16	LK AG/TH	E200.5 E200.5/E200.7

RL/PQL=Reporting/Practical Quantitation Level DIL=Dilution (analysis required diluting to evaluate) ND=Not Detected BRL=Below Reporting Level (less than the reporting level, the lowest amount the laboratory can detect and report.) MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal

#### **Comments:**

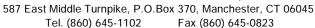
P.O.#:

Maximum Contaminant Level (Lower of): 40 CFR Part 141; Public Health Law, Section 225 Part 5, Subpart 5-1. The highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards.

Secondary DW Maximum Contaminant Level Goal (MCLG): 40 CFR Part 143. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are non-enforceable public health goals.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director


May 17, 2016

Reviewed and Released by: Bobbi Aloisa, Vice President

Page 18 of 18 Ver 1



#### Environmental Laboratories, Inc.





SDG I.D.: GBN31241

# QA/QC Report

May 17, 2016

#### QA/QC Data

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 345424A (mg/L),	QC Sar	nple No	: BN3118	4 (BN31	271, BI	N31273	3)							
ICP Metals - Aqueous														
Lead	BRL	0.001				96.9			91.7			85 - 115	20	
Comment:														
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%									
QA/QC Batch 345426 (mg/L), C	ΩC Sam _l	ole No:	BN31236	(BN312	41, BN	31243,	BN3124	15, BN3	1247, I	3N3124	9, BN3	1251)		
ICP Metals - Aqueous														
Lead	BRL	0.001	< 0.001	< 0.001	NC	101			99.0			85 - 115	20	
Comment:														
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%									
QA/QC Batch 345426A (mg/L),	QC Sar	nple No	: BN3125	3 (BN31	253, BI	N31255	5, BN312	257, BN	31259	, BN312	61, BN	131263,	BN3126	5,

BN31267, BN31269) ICP Metals - Aqueous

BRL 0.001 101 102 85 - 115 20

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

QA/QC Batch 345725 (mg/L), QC Sample No: BN31262 (BN31262)

ICP Metals - Aqueous

Lead BRL 0.001 0.012 0.012 94.1 94.3 85 - 115

Comment:

Additional: LCS acceptance range is 85-115% MS acceptance range 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

May 17, 2016

Tuesday, May 17, 2016 Criteria: None

# **Sample Criteria Exceedences Report**

**GBN31241 - JC-BROD** 

State: NY RL Analysis SampNo Acode Phoenix Analyte Criteria Result RL Criteria Criteria Units BN31257 PB-DWICP EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs 0.016 0.001 0.015 0.001 mg/L Lead BN31257 PB-DWICP Lead NY / NY Residential DW / Lead 0.016 0.001 0.015 0.015 mg/L BN31261 PB-DWICP Lead EPA / 40 CFR 141 DW / 141.80 Lead & Copper MCLs 0.139 0.001 0.015 0.001 mg/L BN31261 PB-DWICP Lead NY / NY Residential DW / Lead 0.139 0.015 0.015

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Page 1 of 1

mg/L

0.001



### **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823



# **Analysis Comments**

May 17, 2016 SDG I.D.: GBN31241

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.



## **Environmental Laboratories, Inc.**

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

# NY Temperature Narration

May 17, 2016



SDG I.D.: GBN31241

The samples in this delivery group were received at  $20^{\circ}$ C. (Note acceptance criteria is above freezing up to  $6^{\circ}$ C)

Lead In Water Chain of Custody Form Date: <u>\$//2//4</u>

JCB#: 16-34415 OBS

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
	OBS	ı	CR	in	2005	DW	P		19	5/12	5:50	3124
	OBS	1	CR	în	2005	DW	¥_		1 <i>f</i>	5/12	5:50	31247
2	OBS	t	NO	In	2009	OF	ρ	j	2 P	5/12	5:63	31243
2	OBS	1	NU	in	2009	CF	F	1	2 F	5/12	5 53	3124
3	OBS	1	HA	BW	2086	DN	ρ	1	3 <i>P</i>	5/12	5:56	3124
3	OBS	1	HA	By	2086	DW	F	İ	3 <i>f</i>	5/12	5.56	3124
4	OBS	1	HA	Bb	2082	DW	ρ	1	40	5/12	5:50	3124
4	OBS	1	HA	BY	2082	DW	f	1	46	5/12	5.58	3124
5	OBS	1	HA	BY	2075	Bin	P	1	5 P	5/12	6:00	3124
5	0BS	1	HA	By	2076	Div	+	1	5£	5/12	6:00	37250
6	OBS	1	HA	By	2012	DW	P	1	GP	5/12	6:03	31251
So	OBS	1	HA	BY	2072	DW	<del> </del> <del> </del> <del> </del>		GF	5/12	6:03	31252

Chant: Beth Pase	VFSB			Laboratory Name: Photo	, Xr	Date	Time	Method Of Analy
<b>Building Hame and Address</b>	Oll Rothe	ario		Analyzed By				,
•	Old Belling	49 -	1	QC By				Leas
	Old BethP	au	İ					200
		1		instructions to the Laboratory		_		
Semeler's Name;	Sacriffer	12/2		Turnaround Time: 5760	A .	]		
Sanadar's Simesters:	560			Email Report to:	emcguire@jcbroderick.com	<u>.                                    </u>		
Professional Sys	Passived By:	Data:	Times	Special Instructions:	Analyze Flush Samples (F) O	NLY wher	Primary Sa	imple exceeds 20p
16-								
TEIRE	1777.	64.5	11:24					

Lead In Water Chain of Custody Form 2000 Page <u>2 of 3</u> Date: <u>\$//2//4</u>

JCB#: 16-3445 0BS

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	OBS		CR	in	2047	C+/Dn	P	1	70	5/12	6:05	3125
7	OBS	l	CR	Γίη	2017	CF/DW	f	1	77	5/12	6:05	31254
7	OBS	1	CR	ſ'n	2044	CF/DN	P	1	TP	5/12	6:08	31255
đ	OBS	1	CR	in	2044	Cf/p~	f	1	88	5/12	6:08	3125
9	OBS	1	CR	i'n	2043	CF/DW	P	1	99	5/12	6:10	31257
g	OBS.	1	CR	In	2043	CF/0	f		94	5/12	6:10	31258
10	OBS	1	CR	ľη	2041	ct/Dr	P		10 p	5/12	6:12	31250
10	OBS	1	CR	ĩη	2041	CF/P~	f		104	5/12	6:12	31260
. 11	OBS	1	CR	ľη	2040	C+/m	P	1	11P	5/12	6:15	3126
11.	OBS	1	CR	ľ'n	2040	CF/Dr	F	1	114	5/12	6:15	312602
12	o Bs	1	CR	ī'n	2038	C+/Dr	P	ĺ	12p	5/12	618	31263
12	0 BS	7	CR	în	2038	Cf/DV	F	•	124	9/14	6:18	31264

Client: Bettingag		)		Laboratory Name: Place	<b></b> が	Date Time	Methed Of Analysis
<b>Building Name and Address</b>	CH BEAME	our.		Analyzed By			
	Old Bethr Elemente	49		QC By			-Leas
				instructions to the Laborate	ry .		<u> </u>
Semular's Heme:	San Blas	35-		Turnaround Time: 5%	ndad		
Semeter's Simetere:	3/22			Email Report to:	emcguire@jcbroderick.com		
Bellessished Br.	Passived By:	Date:	Time:	Special instructions:	Analyze Flush Samples	(F) ONLY when Primary	Sample exceeds 20pbb
TO DELVE	7 77	- I	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

Lead In Water Chain of Custody Form Page 3 of 3
Date: \$\( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \)

JCB#: 16-34415

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
13	OBS	1	CR	in	2031	Cf/Dre	P	ľ	13 P	S/1/2	6:30	31205
13	OBS	1	CR	in	2037	C+/Ph	F		134	5/12	6:20	3126
4.1 <i>6</i>			- 1							7110	650	0,20
14	OBS	1	HA	BY	7.038°	DN	0		14 P		<u> </u>	21210
1.4.	OBS	1	HA	BV	2030	DW	f		147	5/12		3126 3126
15	0BS	1	KI	in	2030	KC	P	1	15 P	5/14	635	3126
15	OBS	1	Kt	in	2030	KC	F	1	154		6:35	312
	0 <i>B</i> S		FA	in	1001	CF	Ρ		160		6:40	3127
16	0BS	1	FA	in	1001	Cf	F	1	164	5/12		3127
17	QBS	1	HA	Bb	1001	DW	P	)	17P	5/12		3127
17	OBS	)	HA	By	1001	DW	F	1	17F	5/12	6:45	3127

Chant: Beth Dave	VESP			Laboratory Name: Phoen's		7		
Building Name and Address	OH BETHANDE			Analyzed By	T	Deta	Time	Method Of Analysis
	elamentar			QC By			<u> </u>	Leas
Samulard Name;	Soan Bio	-21		instructions to the Laboratory				
Sampler's Simplere:	5/20	Pks		Turneround Time: Standand				
Informational Dr.			T	Email Report to:	emcguire@icbroderick.com	<u> </u>		
VA.V	Sealand Br:		Time:	Special Instructions:	Analyze Flush Samples (F) O	NLY when	Primary Sa	mple exceeds 20pbb
TORK	TEC	1.0	1. 35 k					



# **Technical Report**

prepared for:

J.C. Broderick 1775 North Express Drive Hauppauge NY, 11788

**Attention: Edward McGuire** 

Report Date: 05/23/2016

Client Project ID: 16-34415 PWE York Project (SDG) No.: 16E0581

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 14

Report Date: 05/23/2016 Client Project ID: 16-34415 PWE York Project (SDG) No.: 16E0581

# J.C. Broderick

1775 North Express Drive Hauppauge NY, 11788

Attention: Edward McGuire

# **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 13, 2016 and listed below. The project was identified as your project: **16-34415 PWE**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	<b>Date Received</b>
16E0581-01	1P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-02	2P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-04	3P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-06	4P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-08	5P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-10	6P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-12	<b>7P</b>	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-14	8P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-15	8F	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-16	9P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-17	9F	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-18	10P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-20	11P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-22	12P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-23	12F	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-24	13P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-25	14P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-26	15P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-28	16P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-30	17P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0581-32	18P	Drinking Water	05/12/2016	05/13/2016
16E0581-34	19P	Drinking Water	05/12/2016	05/13/2016

# **General Notes for York Project (SDG) No.: 16E0581**

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director

05/23/2016

Date:



Client Sample ID: 1P York Sample ID: 16E0581-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:11 am05/13/2016

Lead by EPA 200.8 PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

				Reported to							Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		3.20		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 18:44	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDI	EP,PADEP	

### **Sample Information**

Client Sample ID: 2P York Sample ID: 16E0581-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:12 am05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u> PRES

Sample Prepared by Method: EPA 200.8

			Reported to								Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference !	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		7.63		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 18:51	ALD
				Certifications: CTDOH,NI						ELAC-NY10854,NJDE	EP,PADEP		

# **Sample Information**

Client Sample ID: 3P York Sample ID: 16E0581-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:14 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	).	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time ethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		10.8		ug/L	0.065	1.00	1	EPA 200.8 Certifications: C	05/19/2016 09:21 TDOH,NELAC-NY10854,NJD	05/19/2016 18:58 EP,PADEP	ALD

### Sample Information

 Client Sample ID:
 4P
 York Sample ID:
 York Sample ID:
 16E0581-06

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0581
 16-34415 PWE
 Drinking Water
 May 12, 2016 6:16 am
 05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 4 of 14



**4P Client Sample ID:** York Sample ID: 16E0581-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 05/13/2016

16E0581 16-34415 PWE Drinking Water May 12, 2016 6:16 am

Sample Prepared by Method: EPA 200.8

				Reported to								Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference M	lethod	Prepared	Analyzed	Analyst
7439-92-1	Lead		5.14		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 19:04	ALD
									Certifications: (	TDOH NE	LAC NV10854 NIDE	DDADED	

# **Sample Information**

**Client Sample ID:** 5P **York Sample ID:** 16E0581-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0581 16-34415 PWE Drinking Water May 12, 2016 6:18 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

				Reported to							Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		5.23		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 19:11	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	EP,PADEP	

### **Sample Information**

**Client Sample ID:** 6P **York Sample ID:** 16E0581-10

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16-34415 PWE 16E0581 Drinking Water May 12, 2016 6:20 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference 1	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.47		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 19:32	ALD
			Certifications: CTD							CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	

### **Sample Information**

**Client Sample ID: 7P** York Sample ID: 16E0581-12

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0581 16-34415 PWE Drinking Water May 12, 2016 6:22 am 05/13/2016

#### Lead by EPA 200.8 **Log-in Notes:** PRES **Sample Notes:**

Sample Prepared by Method: EPA 200.8

CAS No	D.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.02		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 19:39	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 5 of 14



Client Sample ID: 7P York Sample ID: 16E0581-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:22 am05/13/2016

**Sample Information** 

Client Sample ID: 8P York Sample ID: 16E0581-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:24 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Parameter Result Units LOD/MDL Dilution Reference Method CAS No. Flag LOOPrepared Analyzed Analyst 7439-92-1 Lead 191 ug/L EPA 200.8 05/19/2016 09:21 05/21/2016 22:04 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

**Sample Information** 

Client Sample ID: 8F York Sample ID: 16E0581-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:25 am05/13/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

Date/Time Reported to Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOQ Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/20/2016 07:52 ALD 41.9 ug/L Lead CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

**Sample Information** 

Client Sample ID: 9P York Sample ID: 16E0581-16

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:26 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Reported to Date/Time Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOO Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/19/2016 09:21 05/19/2016 19:52 Lead 23.5 ug/L 0.065 ALD Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 6 of 14



Client Sample ID: 9F York Sample ID: 16E0581-17

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:27 am05/13/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Date/Time Iethod Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		18.4		ug/L	0.065	1.00	1	EPA 200.8	05/20/2016 07:52	05/21/2016 21:23	ALD

# **Sample Information**

<u>Client Sample ID:</u> 10P <u>York Sample ID:</u> 16E0581-18

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:28 am05/13/2016

# Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

ı.							resported t				Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference M	<b>1ethod</b>	Prepared	Analyzed	Analyst
7439-92-1	Lead		6.46		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 19:59	ALD
									Certifications:	CTDOH NE	LAC-NY10854 NJDE	PPADEP	

Reported to

### **Sample Information**

<u>Client Sample ID:</u> 11P <u>York Sample ID:</u> 16E0581-20

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:30 am05/13/2016

# Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No. Dougneton Doubt Flor							Reported to				Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		6.21		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 20:06	ALD
			Certifications: CTDC						CTDOH.NE	ELAC-NY10854,NJDI	EP.PADEP		

# **Sample Information**

Client Sample ID: 12P York Sample ID: 16E0581-22

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:33 am05/13/2016

# Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

					Reported to	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Data/Time

Doto/Time



Sample Info	rmation
-------------	---------

 Client Sample ID:
 12P
 York Sample ID:
 16E0581-22

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0581
 16-34415 PWE
 Drinking Water
 May 12, 2016 6:33 am
 05/13/2016

0.065

1.00

EPA 200.8

Certifications:

CTDOH,NELAC-NY10854,NJDEP,PADEP

ALD

**Sample Information** 

ug/L

<u>Client Sample ID:</u> 12F <u>York Sample ID:</u> 16E0581-23

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:34 am05/13/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> <u>Sample Notes:</u>

21.4

Sample Prepared by Method: EPA 200.8

Lead

7439-92-1

							Reported to	)			Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference M	<b>1ethod</b>	Prepared	Analyzed	Analyst
7439-92-1	Lead		7.57		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:52	05/21/2016 21:30	ALD
									Certifications:	CTDOH NE	ELAC-NY10854 NIDE	PPADEP	

### **Sample Information**

<u>Client Sample ID:</u> 13P <u>York Sample ID:</u> 16E0581-24

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:35 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to	)		Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference Met	hod Prepared	Analyzed	Analyst
7439-92-1	Lead		2.30		ug/L	0.065	1.00	1	EPA 200.8	05/19/2016 09:21	05/19/2016 20:19	ALD

# **Sample Information**

<u>Client Sample ID:</u> 14P <u>York Sample ID:</u> 16E0581-25

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:36 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to	)			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		2.16		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 20:26	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 8 of 14



<u>Client Sample ID:</u> 15P <u>York Sample ID:</u> 16E0581-26

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:37 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.47		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:22	05/19/2016 21:07	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	

**Sample Information** 

<u>Client Sample ID:</u> 16P <u>York Sample ID:</u> 16E0581-28

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:39 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		8.11		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:22	05/19/2016 21:27	ALD
									Certifications:	CTDOH.NI	ELAC-NY10854,NJDE	P.PADEP	

### **Sample Information**

<u>Client Sample ID:</u> 17P <u>York Sample ID:</u> 16E0581-30

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:41 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS N	lo.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference !	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		3.58		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:22	05/19/2016 21:34	ALD
									Certifications:	CTDOH NE	LAC-NY10854.NJDE	ED DA DED	

# **Sample Information**

<u>Client Sample ID:</u> 18P <u>York Sample ID:</u> 16E0581-32

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:43 am05/13/2016

<u>Log-in Notes:</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

CAS No. Parameter Result Flag Units LOD/MDL LOQ Dilution Reference Method Prepared Analyzed Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 9 of 14



 Client Sample ID:
 18P
 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0581
 16-34415 PWE
 Drinking Water
 May 12, 2016 6:43 am
 05/13/2016

7439-92-1 Lead 3.18 ug/L 0.065 1.00 1 EPA 200.8 05/19/2016 09:22 05/19/2016 21:41 Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

**Sample Information** 

Client Sample ID: 19P York Sample ID: 16E0581-34

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E058116-34415 PWEDrinking WaterMay 12, 2016 6:45 am05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

				Reference Method	Prepared	Analyzed	Analyst
ug/L	0.065	1.00	1	EPA 200.8	05/19/2016 09:22	05/19/2016 21:48	ALD
	ug/L	ug/L 0.065	ug/L 0.065 1.00	ug/L 0.065 1.00 1		1 2112000	ag 2 0.000 1.00 1 2.11.200.0

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 10 of 14

ALD



### **Notes and Definitions**

PRES	Sample was received with no preservative and was preserved upon receipt at the laboratory. If for metals, the sample was allowed to sit for 18-24 hours before analysis.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.

Reported to

MDL.

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

NR Not reported

RPD Relative Percent Difference

600 and 200 series methods.

Wet The data has been reported on an as-received (wet weight) basis

Low Bias

Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Lead In Water Chain of Custody Form

JCB#: 16-34415 (pue)

X

Page of 3
Date: 5/12/16

16E058)

Map Location	Building Code	Floor	Functional Spac	e IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
1.	PWE	ı	of_	In	2055	WC	P	1	18	5/12	6:11	
2	PWE	١	KT.	In	2060	KC	P	١	28	5/12	6:12	
2	PWE	1	KI	In	2060	L'C	F	1	2 <i>f</i>	5/12	6:13	
3	PWE	١	CR	In	2037	C F/DW	P	1	3 P	5/12	6:14	
3	PWE	1	CR	In	2037	C F/DN	F	i	3 £	5/12	6:15	
4	PWE	١	CR	tn	2045A	(F/DW	P	١	46	5/12	6:16	<del></del>
10.05	PWE	1	CR	In	2045A	c F/DW	f	ı	44	5/12	6:17	. 1
5	PWE	١	CR	In	2047	cflow	P	١	5p	5/12	6:18	
5	PWE	1	CR	In	2047	CF/DW	F	ı	5. f	5/12	6:19	
6	PWE	1	(R	tn	2048	(F/DY	P		6P	<b>T</b> 1	6:20	
6	PWE	ŧ	CR	In	2048	CFIDW	£	l	6+	<del>-</del> (	6:21	
7	PWE	ì	CR	<del>tn</del>	2046	CF/DW	P	{ ·	7P .	5/12	6:22	

	client: Plain views			Laboratory Name: Yerk	Date Time Mathed Of Analysis
	Parkway Element	300 manet	HOHILL ra	Analyzed By Crack (Accepted By Care Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Co	Lead Lead
P		Brittony Rich		Instructions to the Laboratory  Turnaround Time: Stade S  Email Report to: emeguire@jcbroderick.com	
age 12 of 1	Relinguished By: B. Riv. HTMn BD	Received By: Vhs. In PGrace	Date: Time: 511316 1117Am 573~16 1627		s (F) ONLY when Primary Sample exceeds 20pbb

Lead In Water **Chain of Custody Form** 

X

Page 2 of 3
Date: 5/12/16

JCB#: 16-34415 (PWE)

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	PWE	١	CR	立り	2046	CF/Du	£	ı	46	5/12	6:23	
4	PW.E	١	C12	Fn	2038	CFIDU	P	١	86	5/12	6:24	
8	PUE	١	CR	In	2038	cf/DW	f	1	84	5/12	6:25	1
9	PWE	١	(R	In	2035A	cf/Du	P	1	99	5/12	6:26	
9	PWE	١	CR	せり	2035A	CFIDW	P	١	9 <b>F</b>		6:27	
10	PWE	1	FL	In	2085	Kf	P	1	lop		6:28	
10	PWE	i	FL	Φn	7085	KF	F	l	10¢	51	6:29	
	PWE	1	N0	In	2074	NS	P	١	1119	ر سو	6:30	· · · · · · · · · · · · · · · · · · ·
11	PWE	į	NO	In	2079	NS	f		116	٣,	6:31	
12	PWE	1	KI	Fh	2099	KC	P	L	128		6:33	
12	PWE	ı	KI	<b>I</b> h	2099	KC	F	l	12 f		6:34	
\\$	PUE	1	-CA	In	2100	WC	P	ì			6:35	** · · · · · · · · · · · · · · · · · ·

Client: Plain VIEL Building Name and Address Park way Elementry	300 Moneth Rainview, N		
Sampler's Name;	BUHONY K	chamen	
Relinguished By:	Received By:	Date:	Ilme:
OBrightman 602	- Alacha	5-13-15	HISON
of 14		3-637	G 4.8

Laboratory Hame:	fort	Δ		Date	Time	Mathod Of Analysis
Analyzed By		lucal	an	5114503	8,00	
ос ву						lead

instructions to the Laboratory Turnaround Time: Emeil Report to: emcguire@icbroderick.com Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

Lead In Water Chain of Custody Form

JCB#: 16-34415 (PWE)

Page 3 of 3 Date: 5/12/16

X

16E0581

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
14	PWE	١	CA	In	2100	wc	P	ı	14 P	5/12	6:36	
15	PUF	١	CR	In	2027	CF	P		15 p	5/12	6:37	
15	PWE	1	CR	et n	2027	CF	F	١	15 F	5/12	6:38	
16	PWE	ı	HA	by	2637	ÐΨ	P	١	16P	5/12	6:39	
1.6	PUE	1	HA	by	2027	DU	¢	t	164	5/12	6:40	
17	PNe	1	HA	by	2100	Pw	P	)	)AP	5/12	6:41	* *************************************
17	Pwe	1	HA	by	2100	DW.	f	l		5/12	6:42	
- Vist	PWE	1	HA	by	2003	Dal	P	·Ł	The second of the second of the second		6:43	
18	PUE	ı	HA	ЬУ	2003	DW	t		Object the second second	5/12	6:49	
19	PWE	١	HA	by	2119	Pω	P	l		<b>_</b> _,	6:45	
19	PWE	1	HA	by	2119	DW	f	t			6:46	
								·				

Ì	Chent: PIGINUICLU Building Name and Address	U+SD 360 monetio	1416 56	1	Laboratory Name: Your Bate Time Method Of Analysis
		Plainuiew, NY			ac by Charla 1997 8:00 lead
₽	bronier's Clemeters	Brittony Rictim	2.41		Turneround Time: And and Emeil Report to: emcguire@icbroderick.com
age 14 of	3. Richman Br	Becoived By: 129 min Pagrace	Date: N-SIMb 5-13-1		Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb



# **Technical Report**

prepared for:

J.C. Broderick
1775 North Express Drive
Hauppauge NY, 11788

**Attention: Edward McGuire** 

Report Date: 05/23/2016

Client Project ID: 16-34415 (PDE)
York Project (SDG) No.: 16E0578

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 11

Report Date: 05/23/2016 Client Project ID: 16-34415 (PDE) York Project (SDG) No.: 16E0578

# J.C. Broderick

1775 North Express Drive Hauppauge NY, 11788 Attention: Edward McGuire

# **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 13, 2016 and listed below. The project was identified as your project: **16-34415 (PDE)**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	Date Received
16E0578-01	1P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-03	2P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-04	3P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-05	4P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-06	5P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-08	6P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-10	7 <b>P</b>	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-12	8P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-14	9P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-16	10P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-18	11P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-19	11F	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-20	12P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0578-22	13P	Drinking Water	05/12/2016	05/13/2016

# **General Notes for York Project (SDG) No.: 16E0578**

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.

8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

**Date:** 05/23/2016

Benjamin Gulizia Laboratory Director





Client Sample ID: 1P York Sample ID: 16E0578-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:05 am05/13/2016

<u>Lead by EPA 200.8</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to				Date/Time	Date/Time	
CAS No	).	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		7.40		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 16:14	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	

**Sample Information** 

Client Sample ID: 2P York Sample ID: 16E0578-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:08 am05/13/2016

<u>Lead by EPA 200.8</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported t	0			Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference I	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		3.46		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 16:21	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	

# **Sample Information**

Client Sample ID: 3P York Sample ID: 16E0578-04

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:10 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	).	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.15		ug/L	0.065	1.00	1	EPA 200.8 Certifications:	CTDOH,NE	05/19/2016 09:20 LAC-NY10854,NJDE	05/19/2016 16:28 EP,PADEP	ALD

Sample Information

 Client Sample ID:
 4P
 York Sample ID:
 16E0578-05

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0578
 16-34415 (PDE)
 Drinking Water
 May 12, 2016 6:13 am
 05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 4 of 11



**4P Client Sample ID:** York Sample ID: 16E0578-05

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 05/13/2016

16-34415 (PDE) Drinking Water May 12, 2016 6:13 am

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Iethod	Prepared	Analyzed	Analyst
7439-92-1	Lead		4.10		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 16:48	ALD
									Certifications: (	TDOH NE	ELAC NV10854 NIDE	DDADED	

# **Sample Information**

**Client Sample ID:** 5P **York Sample ID:** 16E0578-06

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:16 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		6.76		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 16:55	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	

### **Sample Information**

**Client Sample ID:** 6P **York Sample ID:** 16E0578-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:19 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		6.67		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 17:02	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	

### **Sample Information**

**Client Sample ID: 7P** York Sample ID: 16E0578-10

Client Project ID York Project (SDG) No. Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:22 am 05/13/2016

#### Lead by EPA 200.8 **Log-in Notes:** PRES **Sample Notes:**

Sample Prepared by Method: EPA 200.8

CAS No	D.	Parameter	Result	Flag	Units	LOD/MDL	Reported to	Dilution	Reference M	Aethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		4.55		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 17:09	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	P,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 5 of 11



 Client Sample ID:
 7P

 York Project (SDG) No.
 Client Project ID

 Matrix
 Collection Date/Time

 Date Received

<u>rk Project (SDG) No.</u> <u>Client Project ID</u> <u>Matrix</u> <u>Collection Date/Time</u> <u>Date Received</u>

16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:22 am 05/13/2016

**Sample Information** 

Client Sample ID: 8P York Sample ID: 16E0578-12

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:25 am05/13/2016

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Parameter Result Units LOD/MDL Dilution Reference Method CAS No. Flag LOOPrepared Analyzed Analyst 7439-92-1 Lead 7.82 ug/L EPA 200.8 05/19/2016 09:21 05/19/2016 17:36 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

**Sample Information** 

Client Sample ID: 9P York Sample ID: 16E0578-14

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:29 am05/13/2016

<u>Lead by EPA 200.8</u> <u>Log-in Notes:</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

Date/Time Reported to Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOQ Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/19/2016 09:21 ALD 5.72 ug/L Lead CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

**Sample Information** 

Client Sample ID: 10P York Sample ID: 16E0578-16

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057816-34415 (PDE)Drinking WaterMay 12, 2016 6:32 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Reported to Date/Time Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOO Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/19/2016 09:21 05/19/2016 18:17 Lead 5.11 ug/L 0.065 ALD Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<mark>7-0166</mark>

Page 6 of 11



11P Client Sample ID: York Sample ID: 16E0578-18

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:35 am 05/13/2016

**Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No.		Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	<b>1ethod</b>	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		16.6		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 18:24	ALD

# **Sample Information**

11F **Client Sample ID: York Sample ID:** 16E0578-19

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:36 am 05/13/2016

#### **Log-in Notes: Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

		ag Units	LOD/MDL	LOQ	Dilution	Reference Met	thod Prepared	Analyzed	Analyst
7439-92-1 <b>Lead</b>	3.77	ug/L	0.065	1.00	1	EPA 200.8 Certifications: CTI	05/20/2016 07:52 DOH.NELAC-NY10854.NJDE	05/21/2016 21:09	ALD

### **Sample Information**

12P **Client Sample ID: York Sample ID:** 16E0578-20

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:37 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		14.6		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:21	05/19/2016 18:30	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	

# **Sample Information**

13P **Client Sample ID: York Sample ID:** 16E0578-22

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0578 16-34415 (PDE) Drinking Water May 12, 2016 6:39 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

					Reported to	0		Date/Time	Date/Time	
CAS No.	Parameter	Result	Flag	Units	LOD/MDL LOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166



Client Sa	mple ID: 13P							York Sample	<u>ID:</u> 16F	E0578-22
York Proje	ect (SDG) No.	Client Project I	<u>D</u>			<u>N</u>	<u>Matrix</u>	Collection Date/Time	Date	Received
1	6E0578	16-34415 (PDE	Ε)			Drink	king Water	May 12, 2016 6:39 am	0.5	5/13/2016
7439-92-1	Lead	9.98	ug/L	0.065	1.00	1	EPA 200.8	05/19/2016 09:21	05/19/2016 18:37	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>



### **Notes and Definitions**

	11000 1111 2 1111111111
PRES	Sample was received with no preservative and was preserved upon receipt at the laboratory. If for metals, the sample was allowed to sit for 18-24 hours before analysis.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

Reported to

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

NR Not reported

RPD Relative Percent Difference

600 and 200 series methods.

Wet The data has been reported on an as-received (wet weight) basis

Low Bias

Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

# Lead In Water Chain of Custody Form

JCB#: 16-34415 (PDE)

16E0578

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
4	PDE	1	KI	IN	2044	KC	P	}	iP	5/12	6:05	
1	PDE	1	KI	M	2044	KC	F		IF	5/12	6:05	
	PDE	Ì	HA	BY	2119	WC	P	1	2 P	5/12	6:08	<u> </u>
3	PDE	.	Ca	IN	2052	WC	P	1	3P	5/12	(e:10	
	PDE	١	Ca	IN	2051	WC	P	1	40	5/12	6:13	***************************************
5	POE	1	HA	BY	2057	DW	P	1	5P	5/12	6:16	
5	ODE	ſ	HA	BY	2057	DW	F	1	SF	5/12	6:17	her
6	PDE	1	HA	BY	2090	DW	P		6P	5/12	6:19	
	PDE		HA	BY	2090	DW	F	1	6F	5/12	6:20	
	PDE	1	HA	BY	2074	DW	P	1 .	70	5/12	6:22	
7	DE	i	HA	148	2074	DW	F		76	5/12	6:23	
8	DE	1	FL	M	2074	(6	P		89	5/12	6:25	

Client: Plaintiew - Old	Bethouse CSD		
Building Name and Address Pasadeni Drivi ES	3 Richard Court NY	Phinus	w.
Sampler's Name;	Koun Mandenstra		
Sampler's Signature: Relinquished By:	(21)	T	·
Nemindumied By:	Received By:	Date:	Ilme:
- KVI	Paparce	2-13-16	11500
	.0		@ 500

Laboratory Name: Yark	Date Time	Method Of Analysis
QC By	- 216-205 b. 'CO	( a d
	····	Lee

Instructions to the Laboratory

Turnaround Time: Stadad

Email Report to: emcguire@icbroderick.com

Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

# Lead In Water **Chain of Custody Form**

JCB#:16-34415 (PDF)

0

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Cl	T		<del></del>	Ţ	
8	PNF		FL	IN	20711		Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Resul
9	PDE	-		<del> </del>	2074	(F	F		8F	5/12	6:26	<del></del>
9			HA	BY	2012	DW	P		9P	5/12	<del></del>	
	PDE	1	HA	BY	2012	DW	F	-			6:29	
10	POE	1	OF	IN	2016	CF	P		9 F	5/12	6:30	
10	PDE	1	OF	IN	2016				109	5/12	6:32	
11	PDE					Ç.F.	F		IOF	5/12	6:33	
	PDE	<del>,</del>		BY	2007	DW	Р	}	lip	5/12	6:35	
			HA	ВУ	2007	DW	F		UF	5/12		
13.00	PDE	1	CR	M	2125	CF	P				6:36	
12	PDE	1 .	CR	M	2125	CF	F		12P	5/12	6:37	
13	PDE	1	CR	IN	2128				12 F	5/12	6:38	
13	PDE	1		IN		CF	P	1 .	1317	5/12	6:39	
				114	2128	CF	F	l	13F	5/12	6'40	<del></del>
											- 10	

Chimit: Plaunvien	1-01d Pethpag	0 (5)	
Pasadera Drive	3 Richard Court		NY
ES			
raler's Name:	Keun Manden	e/a	
age whiched by:	Received By:	Des SAD	Tions:
3 / 100	1 Prace	2-17-16	-
of 1			62.0

Laboratory Risme: York	
Acceptance By	Date Dince Reathering
OC BY Seally	CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF
WAL BY	514-513 C GO
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Nonethern and a second	
produced to the Capaciton	U _{man} i
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	

Transported Those Exceed (Respect that emcguira@jcbroderick.com

Special lesbertions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb



# **Technical Report**

prepared for:

J.C. Broderick 1775 North Express Drive Hauppauge NY, 11788

**Attention: Edward McGuire** 

Report Date: 05/23/2016

Client Project ID: 16-34415 JAS York Project (SDG) No.: 16E0576

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 11

Report Date: 05/23/2016 Client Project ID: 16-34415 JAS York Project (SDG) No.: 16E0576

# J.C. Broderick

1775 North Express Drive Hauppauge NY, 11788

Attention: Edward McGuire

# **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 13, 2016 and listed below. The project was identified as your project: **16-34415 JAS**.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	Date Received
16E0576-01	1P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-03	2P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-07	4P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-08	<b>4F</b>	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-09	5P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-11	6P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-13	7 <b>P</b>	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-15	8P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-17	9P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-18	9F	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-19	10P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-21	11P	<b>Drinking Water</b>	05/13/2016	05/13/2016
16E0576-24	13P	<b>Drinking Water</b>	05/13/2016	05/13/2016

# **General Notes** for York Project (SDG) No.: 16E0576

- 1. The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- 6. All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- 8. This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director



Date:

05/23/2016



Client Sample ID: 1P York Sample ID: 16E0576-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:14 am05/13/2016

Lead by EPA 200.8

<u>Log-in Notes:</u> PRES <u>Sample Notes:</u>

Sample Prepared by Method: EPA 200.8

							Reported to	)	Date/Time	Date/Time		
CAS No.	•	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		11.2		ug/L	0.065	1.00	1	EPA 200.8	05/19/2016 09:20	05/19/2016 14:18	ALD

### **Sample Information**

Client Sample ID: 2P York Sample ID: 16E0576-03

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:15 am05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u> PRES

Sample Prepared by Method: EPA 200.8

				Reported to							Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference N	<b>1ethod</b>	Prepared	Analyzed	Analyst
7439-92-1	Lead		5.91		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 14:39	ALD
									Certifications:	CTDOH,NE	LAC-NY10854,NJDE	EP,PADEP	

# **Sample Information**

Client Sample ID: 4P York Sample ID: 16E0576-07

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:17 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	D.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		389		ug/L	0.650	10.0	10	EPA 200.8 Certifications:	CTDOH,NE	05/19/2016 09:20 LAC-NY10854,NJDE	05/21/2016 21:43 EP,PADEP	ALD

### Sample Information

 Client Sample ID:
 4F
 York Sample ID:
 16E0576-08

 York Project (SDG) No.
 Client Project ID
 Matrix
 Collection Date/Time
 Date Received

 16E0576
 16-34415 JAS
 Drinking Water
 May 13, 2016 6:18 am
 05/13/2016

<u>Lead by EPA 200.8</u> <u>PRES</u> <u>Sample Notes:</u>

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 4 of 11



4F **Client Sample ID:** York Sample ID: 16E0576-08

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 05/13/2016

16E0576 16-34415 JAS Drinking Water May 13, 2016 6:18 am

Sample Prepared by Method: EPA 200.8

							Reported to	0			Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		24.2		ug/L	0.065	1.00	1	EPA 200.8		05/20/2016 07:52	05/21/2016 20:56	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	P,PADEP	

# **Sample Information**

**Client Sample ID:** 5P **York Sample ID:** 16E0576-09

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0576 16-34415 JAS Drinking Water May 13, 2016 6:19 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

				Reported to							Date/Time	Date/Time	
CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	lution Reference Method		Prepared	Analyzed	Analyst
7439-92-1	Lead		4.75		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 14:52	ALD
									Certifications:	CTDOH,NE	ELAC-NY10854,NJDE	PPADEP	

### **Sample Information**

**Client Sample ID:** 6P **York Sample ID:** 16E0576-11

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0576 16-34415 JAS Drinking Water May 13, 2016 6:21 am 05/13/2016

#### **Log-in Notes:** PRES **Sample Notes:** Lead by EPA 200.8

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		2.66		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 14:59	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	P,PADEP	

### **Sample Information**

**Client Sample ID: 7P** York Sample ID: 16E0576-13

York Project (SDG) No. Client Project ID Matrix Collection Date/Time Date Received 16E0576 16-34415 JAS Drinking Water May 13, 2016 6:23 am 05/13/2016

#### Lead by EPA 200.8 **Log-in Notes:** PRES **Sample Notes:**

Sample Prepared by Method: EPA 200.8

CAS No	0.	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference	Method	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		2.83		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 15:06	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDI	P,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 5 of 11



Client Sample ID: 7P York Sample ID: 16E0576-13

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:23 am05/13/2016

**Sample Information** 

Client Sample ID: 8P York Sample ID: 16E0576-15

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:25 am05/13/2016

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Parameter Result Units LOD/MDL Dilution Reference Method CAS No. Flag LOOPrepared Analyzed Analyst 7439-92-1 Lead 3.68 ug/L EPA 200.8 05/19/2016 09:20 05/19/2016 15:26 CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

**Sample Information** 

Client Sample ID: 9P York Sample ID: 16E0576-17

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:27 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Date/Time Reported to Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOQ Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/19/2016 09:20 ALD 16.9 ug/L Lead CTDOH,NELAC-NY10854,NJDEP,PADEP Certifications:

Sample Information

Client Sample ID: 9F York Sample ID: 16E0576-18

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:28 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

Reported to Date/Time Date/Time Dilution LOD/MDL CAS No. Parameter Result Flag Units LOO Reference Method Prepared Analyzed Analyst 7439-92-1 EPA 200.8 05/20/2016 07:52 05/21/2016 21:03 Lead 4.00 ug/L 0.065 ALD Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 6 of 11



Client Sample ID: 10P York Sample ID: 16E0576-19

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:29 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	) <b>.</b>	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	Oate/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		8.64		ug/L	0.065	1.00	1	EPA 200.8	19/2016 09:20	05/19/2016 15:40	ALD

# **Sample Information**

Client Sample ID: 11P York Sample ID: 16E0576-21

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:31 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

			Reported to							Date/Time	Date/Time		
CAS N	0.	Parameter	Result	Flag	Units	LOD/MDL	ĹOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		2.90		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 15:47	ALD
									Certifications:	CTDOH,N	ELAC-NY10854,NJDF	EP,PADEP	

### **Sample Information**

Client Sample ID: 13P York Sample ID: 16E0576-24

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057616-34415 JASDrinking WaterMay 13, 2016 6:34 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

CAS No	).	Parameter	Result	Flag	Units	LOD/MDL	Reported to LOQ	Dilution	Reference M	lethod	Date/Time Prepared	Date/Time Analyzed	Analyst
7439-92-1	Lead		2.68		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 15:54	ALD

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 7 of 11



### **Notes and Definitions**

PRES	Sample was received with no preservative and was preserved upon receipt at the laboratory. If for metals, the sample was allowed to sit for 18-24 hours before analysis.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a

Reported to

This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.

99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA

Not reported NR

RPD Relative Percent Difference

600 and 200 series methods.

Wet The data has been reported on an as-received (wet weight) basis

Low Bias

Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias

High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir.

Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Lead In Water
Chain of Custody Form

Page of 3

JCB#: 16-34415 JAS

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
.)	JAS	1	HA	by	2107	DW	P	ì	18	513	6:14	
	JA5	1	HA	by	2107	DW	F	1	1 <del>f</del>	5/13	6:14	<del> </del>
	JAS	1	Br	In	2110	BF	P	ì	20		6:15	
Z	JAS	1	BR	In	2110	BF	£	1	2 <b>É</b>		6:16	
	JAS	)	HA	ЬЧ	2120	DW	ρ	1	ME	5/13	NF	
	JAS	1	44	by	2120	DW	F	1	WF		NF	
	JAS	1	05	<u>en</u>	2123	DW	Р			_	6:17	
	JAS	1	OF:	In	2123	DN	F	6 57 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Maria de Cara de Cara de Paris	Eliza	6118	
	JAS	1	KI	tn	2080	kt	P	1	A STATE OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE	r., a	6:19	
5	JAS	1	K.I.	In	280	Kt	F		CONTRACTOR CONTRACTOR CONTRACTOR	<i>r</i>	6:20	
	JAS	1	HA	by ?	2093	DW	P		6 P	,;	6121	
6	TAS	1	HA	64	2093	DW	F		6 +	5/13	6:22	<del></del>

chant: Plain view	ufsp	Laboratory Name: Ye-Ir-
- 1	85 Jamaica Ave.	Arralyzed By Oncolo S19-512 9 100 Mathod Of Analyzis
School	Plam view, Ny, 11803	Lead
pier's Name;  pier's Signature;	Dritteny Rictimon	Instructions to the Laboratory  Turnaround Time: 57a d - d  Email Report to: emcguire@ichroderick.com
nguished By:	Received By: Date: Time:	Special Instructions: emcguire@icbroderick.com  Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb
of /////	S-13-16 1627	

Lead In Water Chain of Custody Form C

JCB#: 16-34415JAS

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERAID	Outlet Type	Primary/Flush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
7	JAS	1	KI	IN	2060	KC	P		78	5/13	6:23	
7	JAS	1	KI	In	2069	KC	F	١	76	5/13	6:24	
8	JAS	1	HA	by	2020	Del	P	١	80	5 113	6:25	
8	JAS	1	HA	by	2050	DW	P	١	86	5/13	6:26	<u>.</u>
9	JAS	3	FA	In	2040	kc	P		9 p		6:27	
9	JA5	1	FA	<b>I</b> n	2040	KC	F	1	96		6:28	
10	Ins	1	FA	In	2009	KC	P	١	108	5/13	6:29	
ιO	JAS	1	FA	In	2009	KC	<del>(</del>	ì		5/13	6:30	
11	JAS	١	1+1A	by	2023	we	4	l	11 9	5/13	6:31	<del></del>
12	TAS	2	HA	by	3017	PW	P			5/13	NF	
12	JAS -	2	HA	by	3017	DH)	F	1			N/F	
13	JAS	2	CR	Fn	3018	CF	P		13 P	-	6:34	

	nt Plainview	4F50		
100	Iding Name and Address Maica Ave Chool	85 Jamaica Plainview Ni	Ave.	73
Page		Bristeny eretton	/	
	nguished By:	Received By:	Date:	Time:
10 of 11		Agrace 5	2016 2016	115Ar 1627
_				5-00

Laboratory Nama:	Yerr	Data	Time	Mathod Of Analysis
Analyzed By QC By	Junal	2100	25.00	1
				1299

Instructions to the Laboratory

Turneround Time: 5to decide | Storage |

Email Report to: emcguire@icbroderick.com

Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pbb

Lead In Water Chain of Custody Form 16E0576 C Page 3 of 3 Date: 548

1CB#: 16-34415 JAS

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Primary/Elush	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Result
13	JAS	2	CR	Ιn	3018	cf	F	-1	136	5/13	6:35	
											2.02	
							·					
							•					
											•	
			-									· · · · · · · · · · · · · · · · · · ·
												·
								•				
								•				
										<u> </u>		
												7.1
	,							200 C				<u> </u>

	lient: Y CINVICA wilding Name and Address	T			Laboratory Hame: Yet 5	Mathod Of Analysis
C	Tamerca Ave.	PLAINUICH NY		į	ac by	Lead
	school	,			instructions to the Laboratory	
	npler's Name; npler's Signature; inquished for	Britishy Kecth	MO		Turnaround Time: Stade Seminaround Time: Stade Seminar	
e	inguished By:	Received By:	Date:	Time:	Special Instructions: Analyze Flush Samples (F) ONLY when Primary Sam	iple exceeds 20pbb
Of 1		K row_	5-13-16			



# **Technical Report**

prepared for:

J.C. Broderick 1775 North Express Drive Hauppauge NY, 11788

**Attention: Edward McGuire** 

Report Date: 05/20/2016

Client Project ID: 16-34415

(orly Project (SDC) No.: 165057

York Project (SDG) No.: 16E0577

CT Cert. No. PH-0723

New Jersey Cert. No. CT-005



New York Cert. No. 10854

PA Cert. No. 68-04440

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 357-0166

Page 1 of 5

Report Date: 05/20/2016 Client Project ID: 16-34415

York Project (SDG) No.: 16E0577

#### J.C. Broderick

1775 North Express Drive Hauppauge NY, 11788

Attention: Edward McGuire

#### **Purpose and Results**

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on May 13, 2016 and listed below. The project was identified as your project: 16-34415.

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables.

All samples were received in proper condition meeting the customary acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All analyses met the method and laboratory standard operating procedure requirements except as indicated by any data flags, the meaning of which are explained in the attachment to this report, and case narrative if applicable.

The results of the analyses, which are all reported on dry weight basis (soils) unless otherwise noted, are detailed in the following pages.

Please contact Client Services at 203.325.1371 with any questions regarding this report.

York Sample ID	Client Sample ID	<u>Matrix</u>	<b>Date Collected</b>	Date Received
16E0577-01	1P	<b>Drinking Water</b>	05/12/2016	05/13/2016
16E0577-02	2P	<b>Drinking Water</b>	05/12/2016	05/13/2016

#### General Notes for York Project (SDG) No.: 16E0577

- The RLs and MDLs (Reporting Limit and Method Detection Limit respectively) reported are adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference. The RL(REPORTING LIMIT) is based upon the lowest standard utilized for the calibration where applicable.
- Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc. All samples were received in proper condition for analysis with proper documentation, unless otherwise noted.
- All analyses conducted met method or Laboratory SOP requirements. See the Qualifiers and/or Narrative sections for further information.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory, unless noted in the report.
- This report reflects results that relate only to the samples submitted on the attached chain-of-custody form(s) received by York.

Approved By:

Benjamin Gulizia Laboratory Director



Date:

05/20/2016



#### **Sample Information**

Client Sample ID: 1P York Sample ID: 16E0577-01

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057716-34415Drinking WaterMay 12, 2016 6:46 am05/13/2016

Sample Prepared by Method: EPA 200.8

Date/Time Date/Time Reported to Dilution CAS No. Parameter Result Flag Units LOD/MDL ĹOQ Reference Method Analyzed Prepared Analyst 05/19/2016 09:20 05/19/2016 16:00 7439-92-1 ug/L 0.065 1.00 EPA 200.8 ALD 2.98 Lead Certifications: CTDOH,NELAC-NY10854,NJDEP,PADEP

**Sample Information** 

Client Sample ID: 2P York Sample ID: 16E0577-02

York Project (SDG) No.Client Project IDMatrixCollection Date/TimeDate Received16E057716-34415Drinking WaterMay 12, 2016 6:49 am05/13/2016

Lead by EPA 200.8 Log-in Notes: PRES Sample Notes:

Sample Prepared by Method: EPA 200.8

							Reported to	)			Date/Time	Date/Time	
CAS No	) <b>.</b>	Parameter	Result	Flag	Units	LOD/MDL	LOQ	Dilution	Reference	Method	Prepared	Analyzed	Analyst
7439-92-1	Lead		4.81		ug/L	0.065	1.00	1	EPA 200.8		05/19/2016 09:20	05/19/2016 16:07	ALD
									Certifications:	CTDOH,NI	ELAC-NY10854,NJDE	EP,PADEP	

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

Page 3 of 5



#### **Notes and Definitions**

PRES	Sample was received with no preservative and was preserved upon receipt at the laboratory. If for metals, the sample was allowed to sit for 18-24 hours before analysis.
*	Analyte is not certified or the state of the samples origination does not offer certification for the Analyte.
ND	NOT DETECTED - the analyte is not detected at the Reported to level (LOQ/RL or LOD/MDL)
RL	REPORTING LIMIT - the minimum reportable value based upon the lowest point in the analyte calibration curve.
LOQ	LIMIT OF QUANTITATION - the minimum concentration of a target analyte that can be reported within a specified degree of confidence. This is the lowest point in an analyte calibration curve that has been subjected to all steps of the processing/analysis and verified to meet defined criteria. This is based upon NELAC 2009 Standards and applies to all analyses.
LOD	LIMIT OF DETECTION - a verified estimate of the minimum concentration of a substance in a given matrix that an analytical process can reliably detect. This is based upon NELAC 2009 Standards and applies to all analyses conducted under the auspices of EPA SW-846.
MDL	METHOD DETECTION LIMIT - a statistically derived estimate of the minimum amount of a substance an analytical system can reliably detect with a 99% confidence that the concentration of the substance is greater than zero. This is based upon 40 CFR Part 136 Appendix B and applies only to EPA 600 and 200 series methods.
Reported to	This indicates that the data for a particular analysis is reported to either the LOD/MDL, or the LOQ/RL. In cases where the "Reported to" is located above the LOD/MDL, any value between this and the LOQ represents an estimated value which is "J" flagged accordingly. This applies to volatile and semi-volatile target compounds only.
NR	Not reported

RPD Relative Percent Difference

Wet The data has been reported on an as-received (wet weight) basis

Low Bias Low Bias flag indicates that the recovery of the flagged analyte is below the laboratory or regulatory lower control limit. The data user should take note that this analyte may be biased low but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

High Bias High Bias flag indicates that the recovery of the flagged analyte is above the laboratory or regulatory upper control limit. The data user should take note that this analyte may be biased high but should evaluate multiple lines of evidence including the LCS and site-specific MS/MSD data to draw bias conclusions. In cases where no site-specific MS/MSD was requested, only the LCS data can be used to evaluate such bias.

Non-Dir. Non-dir. flag (Non-Directional Bias ) indicates that the Relative Percent Difference (RPD) (a measure of precision) among the MS and MSD data is outside the laboratory or regulatory control limit. This alerts the data user where the MS and MSD are from site-specific samples that the RPD is high due to either non-homogeneous distribution of target analyte between the MS/MSD or indicates poor reproducibility for other reasons.

If EPA SW-846 method 8270 is included herein it is noted that the target compound N-nitrosodiphenylamine (NDPA) decomposes in the gas chromatographic inlet and cannot be separated from diphenylamine (DPA). These results could actually represent 100% DPA, 100% NDPA or some combination of the two. For this reason, York reports the combined result for n-nitrosodiphenylamine and diphenylamine for either of these compounds as a combined concentration as Diphenylamine.

If Total PCBs are detected and the target aroclors reported are "Not detected", the Total PCB value is reported due to the presence of either or both Aroclors 1262 and 1268 which are non-target aroclors for some regulatory lists.

2-chloroethylvinyl ether readily breaks down under acidic conditions. Samples that are acid preserved, including standards will exhibit breakdown. The data user should take note

Certification for pH is no longer offered by NYDOH ELAP.

Semi-Volatile and Volatile analyses are reported down to the LOD/MDL, with values between the LOD/MDL and the LOQ being "J" flagged as estimated results.

For analyses by EPA SW-846-8270D, the Limit of Quantitation (LOQ) reported for benzidine is based upon the lowest standard used for calibration and is not a verified LOQ due to this compound's propensity for oxidative losses during extraction/concentration procedures and non-reproducible chromatographic performance.

120 RESEARCH DRIVE STRATFORD, CT 06615 (203) 325-1371 FAX (203) 35<u>7-0166</u>

J.C. Broderick Associates 1775 Expressway Dr. N. Hauppauge, NY 11788 Contact: Ed McGuire emcguire@jcbroderick.com

Lead In Water Chain of Custody Form

B

Map Location	Building Code	Floor	Functional Space Code	IN/BY	AHERA ID	Outlet Type	Poi	T			20577	
	FPE	1	FL	12	2004	<u> </u>	7,	Number	BOTTLE ID/LABEL	Sample Date	Sample Time	Resul
2	FPE	1	FL	IN	2094	WC	P	\	IP	5/12	6:46	
	FPE				2094	CF	₽	į	2 P	5/12	6:49	
	110	•	1 (	IN	2094	CF	F		2F	$\sim$ /		
									21	2/14	6:50	
										ı		
				_								
		+		_								
liant Plainvice												

	Client: Planview-Old	Bethan CCD		
	A A A MARIE WART DESIGNATION	YFun flace	Leiburgtony Risme: York	_
	Fern Place ES	Plaintrey NY	Amelyzed By Date Bine Method of April 1916	
	Smoler's Neme: Smoler's Senetare:	Keun Monden dier	interpretation to the Laboratory Lead	
	Browsehad By	Received By:	Transcription Times Head	
Page		Legisland Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of	Gmcguira@icbroderick.com	
S	1	19/10 (627)	Analyze Flush Samples (F) ONLY when Primary Sample exceeds 20pth	
으	<b>.l</b>		>	

# Attachment 3

## Laboratory Certifications

### J.C. Broderick & Associates, Inc.

Environmental Consulting & Testing 1775 Expressway Drive North Hauppauge, New York 11788 631.584.5492 fax 631.584.3395



Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER
All approved analytes are listed below:

Bacteriology		Metals I	
Coliform, Total / E. coli (Qualitative)	SM 18-22 9222A,B,C (-97)/40 CFR	141. Arsenic, Total	SM 18-19,21-22 3113B (-99,-04)
	SM 18-22 9223B (-97) (Colilert)		EPA 200.9 Rev. 2.2
E. coli (Enumeration)	SM 18-22 9222A,B,C (-97)/40 CFR	141. Barium, Total	EPA 200.7 Rev. 4.4
	SM 18-22 9223B (-97) (Colilert)	Cadmium, Total	EPA 200.7 Rev. 4.4
Enterococci	Enterolert	Chromium, Total	EPA 200.7 Rev. 4.4
Heterotrophic Plate Count	SM 18-22 9215B (-00)	Copper, Total	EPA 200.5
Chlorinated Acids			EPA 200.7 Rev. 4.4
2,4,5-TP (Silvex)	EPA 515.3	Iron, Total	EPA 200.7 Rev. 4.4
2,4-D	EPA 515.3	Lead, Total	EPA 200.5
Dalapon	EPA 515.3		SM 18-19,21-22 3113B (-99,-04)
Dicamba	EPA 515.3		EPA 200.9 Rev. 2.2
Dinoseb	EPA 515.3	Manganese, Total	EPA 200.7 Rev. 4.4
Pentachlorophenol	EPA 515.3	Mercury, Total	EPA 245.1 Rev. 3.0
Picloram	EPA 515.3	Selenium, Total	SM 18-19,21-22 3113B (-99,-04)
			EPA 200.9 Rev. 2.2
Disinfection By-products		Silver, Total	EPA 200.7 Rev. 4.4
Bromochloroacetic acid	EPA 552.2	Zinc, Total	EPA 200.7 Rev. 4.4
Dibromoacetic acid	EPA 552.2	Metals II	
Dichloroacetic acid	EPA 552.2	Aluminum, Total	EPA 200.7 Rev. 4.4
Monobromoacetic acid	EPA 552.2	Antimony, Total	
Monochloroacetic acid	EPA 552.2	Antimony, Total	SM 18-19,21-22 3113B (-99,-04)
Trichloroacetic acid	EPA 552.2	Pandium Tatal	EPA 200.7 Rev. 2.2
Fuel Additives		Beryllium, Total	EPA 200.7 Rev. 4.4
Methyl tert-butyl ether	EPA 524.2	Molybdenum, Total	EPA 200.7 Rev. 4.4
Naphthalene	EPA 524.2	Nickel, Total	EPA 200.7 Rev. 4.4
Hapitalalerie	LI 7 924.2	Thallium, Total	SM 18-19,21-22 3113B (-99,-04)

Serial No.: 54724





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Metals II		Miscellaneous	
Thallium, Total	EPA 200.9 Rev. 2.2	Bis(2-ethylhexyl) phthalate	EPA 525.2
Vanadium, Total	EPA 200.7 Rev. 4.4	Di (2-ethylhexyl) adipate	EPA 525.3
Metals III			EPA 525.2
Boron, Total	EPA 200.7 Rev. 4.4	Diquat	EPA 549.2
Calcium, Total	EPA 200.7 Rev. 4.4	Glyphosate	EPA 547
Magnesium, Total	EPA 200.7 Rev. 4.4	Hexachlorobenzene	EPA 508
Potassium, Total	EPA 200.7 Rev. 4.4	Hexachlorocyclopentadiene	EPA 508
Sodium, Total	EPA 200.7 Rev. 4.4	Odor	SM 18-22 2150B (-97)
·	El A 200.7 100. 4.4	Organic Carbon, Dissolved	SM 21-22 5310C (-00)
Methylcarbamate Pesticides		Organic Carbon, Total	SM 21-22 5310C (-00)
3-Hydroxy Carbofuran	EPA 531.2	Surfactant (MBAS)	SM 18-22 5540C (-00)
Aldicarb	EPA 531.2	Turbidity	SM 18-22 2130 B (-01)
Aldicarb Sulfone	EPA 531.2	UV 254	SM 19-22 5910B (-00)
Aldicarb Sulfoxide	EPA 531.2	Non-Metals	
Carbaryl	EPA 531.2	Alkalinity	SM 18-22 2320B (-97)
Carbofuran	EPA 531.2	Calcium Hardness	EPA 200.7 Rev. 4.4
Methomyl	EPA 531.2		EPA 300.0 Rev. 4.4
Oxamyl	EPA 531.2	Chloride	
Microextractibles		Oalan	SM 21-22 4500-CI- E (-97)
1,2-Dibromo-3-chloropropane	EPA 504.1	Color	SM 18-22 2120B (-01)
1,2-Dibromoethane	EPA 504.1	Cyanide	EPA 335.4 Rev. 1.0
•	El A 304.1	Fluoride, Total	EPA 300.0 Rev. 2.1
Miscellaneous			SM 18-22 4500-F C (-97)
Benzo(a)pyrene	EPA 525.3	Nitrate (as N)	EPA 353.2 Rev. 2.0
	EPA 525.2		EPA 300.0 Rev. 2.1
Bis(2-ethylhexyl) phthalate	EPA 525.3	Nitrite (as N)	EPA 353.2 Rev. 2.0

Serial No.: 54724





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER
All approved analytes are listed below:

Non-Metals		Polychlorinated Biphenyls	
Nitrite (as N)	EPA 300.0 Rev. 2.1	PCB Screen	EPA 508
Orthophosphate (as P)	SM 18-22 4500-P F (-99)	Trihalomethanes	
	SM 18-22 4500-P E (-99)	Bromodichloromethane	EPA 524.2
Solids, Total Dissolved	SM 18-22 2540C (-97)	Bromoform	EPA 524.2
Specific Conductance	SM 18-22 2510B (-97)	Chloroform	EPA 524.2
Sulfate (as SO4)	EPA 300.0 Rev. 2.1	Dibromochloromethane	EPA 524.2
	SM 18-22 4500-SO4 D (-97)	Total Trihalomethanes	EPA 524.2
Organohalide Pesticides		Volatile Aromatics	
Alachior	EPA 507	1,2,3-Trichlorobenzene	EPA 524.2
Aldrin	EPA 508	1,2,3-Trichlorobenzene	EPA 524.2
Atrazine	EPA 507	1,2,4-Trimethylbenzene	EPA 524.2
Butachlor	EPA 507	1,2-Dichlorobenzene	EPA 524.2
Chlordane Total	EPA 508	·	EPA 524.2
Dieldrin	EPA 508	1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	EPA 524.2 EPA 524.2
Endrin	EPA 508	1,4-Dichlorobenzene	EPA 524.2
Heptachlor	EPA 508	2-Chlorotoluene	EPA 524.2 EPA 524.2
Heptachlor epoxide	EPA 508	4-Chlorotoluene	EPA 524.2
Lindane	EPA 508	4-Chiorotolderie Benzene	EPA 524.2
Methoxychlor	EPA 508	Bromobenzene	EPA 524.2
Metolachlor	EPA 507	Chlorobenzene	EPA 524.2
Metribuzin	EPA 507		EPA 524.2
Propachlor	EPA 508	Ethyl benzene Hexachlorobutadiene	EPA 524.2
Simazine	EPA 507		
Toxaphene	EPA 508	Isopropylbenzene	EPA 524.2
		n-Butylbenzene	EPA 524.2
		n-Propylbenzene	EPA 524.2

Serial No.: 54724





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER
All approved analytes are listed below:

Volatile Aromatics		Volatile Halocarbons	
p-Isopropyltoluene (P-Cymene)	EPA 524.2	cis-1,3-Dichloropropene	EPA 524.2
sec-Butylbenzene	EPA 524.2	Dibromomethane	EPA 524.2
Styrene	EPA 524.2	Dichlorodifluoromethane	EPA 524.2
tert-Butylbenzene	EPA 524.2	Methylene chloride	EPA 524.2
Toluene	EPA 524.2	Tetrachloroethene	EPA 524.2
Total Xylenes	EPA 524.2	trans-1,2-Dichloroethene	EPA 524.2
Volatile Halocarbons		trans-1,3-Dichloropropene	EPA 524.2
1,1,1,2-Tetrachloroethane	EPA 524.2	Trichloroethene	EPA 524.2
1,1,1-Trichloroethane	EPA 524.2	Trichlorofluoromethane	EPA 524.2
1,1,2,2-Tetrachloroethane	EPA 524.2	Vinyl chloride	EPA 524.2
1,1,2-Trichloroethane	EPA 524.2		
1,1-Dichloroethane	EPA 524.2		
1,1-Dichloroethene	EPA 524.2		
1,1-Dichloropropene	EPA 524.2		
1,2,3-Trichloropropane	EPA 524.2		
1,2-Dichloroethane	EPA 524.2		
1,2-Dichloropropane	EPA 524.2		
1,3-Dichloropropane	EPA 524.2		
2,2-Dichloropropane	EPA 524.2		
Bromochloromethane	EPA 524.2		
Bromomethane	EPA 524.2		
Carbon tetrachloride	EPA 524.2		
Chloroethane	EPA 524.2		
Chloromethane	EPA 524.2		

Serial No.: 54724

cis-1,2-Dichloroethene

Property of the New York State Department of Health. Certificates are valid only at the address shown, must be conspicuously posted, and are printed on secure paper. Continued accreditation depends on successful ongoing participation in the Program. Consumers are urged to call (518) 485-5570 to verify the laboratory's accreditation status.

EPA 524.2





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Acrylates		Benzidines	
Acrolein (Propenal)	EPA 8260C	3,3'-Dichlorobenzidine	EPA 625
	EPA 624		EPA 8270D
Acrylonitrile	EPA 8260C	Benzidine	EPA 625
	EPA 624		EPA 8270D
Amines		Chlorinated Hydrocarbon Pestic	ides
1,2-Diphenylhydrazine	EPA 8270D	4,4'-DDD	EPA 8081B
2-Nitroaniline	EPA 8270D		EPA 608
3-Nitroaniline	EPA 8270D	4,4'-DDE	EPA 8081B
4-Chloroaniline	EPA 8270D		EPA 608
4-Nitroaniline	EPA 8270D	4,4'-DDT	EPA 8081B
Aniline	EPA 625		EPA 608
	EPA 8270D	Aldrin	EPA 8081B
Carbazole	EPA 625		EPA 608
	EPA 8270D	alpha-BHC	EPA 8081B
Pyridine	EPA 625		EPA 608
	EPA 8270D	alpha-Chlordane	EPA 8081B
Bacteriology		beta-BHC	EPA 8081B
Coliform, Fecal	SM 9222D-97		EPA 608
Coliform, Total	SM 9222B-97	Chlordane Total	EPA 8081B
E. coli (Enumeration)	SM 9222G-94,-97		EPA 608
	Colilert	delta-BHC	EPA 8081B
	SM 9223B-04 (Colilert)		EPA 608
Enterococci	Enterolert	Dieldrin	EPA 8081B
Heterotrophic Plate Count	SM 18-21 9215B		EPA 608
. ioto. otropino i iuto obditi	310 10 21 02100	Endosulfan I	EPA 8081B

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER

All approved analytes are listed below:

Chlorinated Hydrocarbon Pesticides		Chlorinated Hydrocarbons	
Endosulfan I	EPA 608	1,2,4-Trichlorobenzene	EPA 625
Endosulfan II	EPA 8081B		EPA 8270D
	EPA 608	2-Chloronaphthalene	EPA 625
Endosulfan sulfate	EPA 8081B		EPA 8270D
	EPA 608	Hexachlorobenzene	EPA 625
Endrin	EPA 8081B		EPA 8270D
	EPA 608	Hexachlorobutadiene	EPA 625
Endrin aldehyde	EPA 8081B		EPA 8270D
	EPA 608	Hexachlorocyclopentadiene	EPA 625
Endrin Ketone	EPA 8081B		EPA 8270D
gamma-Chlordane	EPA 8081B	Hexachloroethane	EPA 625
Heptachlor	EPA 8081B		EPA 8270D
	EPA 608	Chlorophenoxy Acid Pesticides	
Heptachlor epoxide	EPA 8081B	2.4.5-T	EPA 8151A
	EPA 608	2,4,5-TP (Silvex)	EPA 8151A
Lindane	EPA 8081B	2,4-D	EPA 8151A
	EPA 608	2,4-DB	EPA 8151A
Methoxychlor	EPA 8081B	Dalapon	EPA 8151A
	EPA 608	Dicamba	EPA 8151A
PCNB	EPA 8270D	Dichloroprop	EPA 8151A
Toxaphene	EPA 8081B	Dinoseb	EPA 8151A
	EPA 608	Demand	
Chlorinated Hydrocarbons			01.50405.04.44
1,2,3-Trichlorobenzene	EPA 8260C	Biochemical Oxygen Demand	SM 5210B-01,-11
1,2,4,5-Tetrachlorobenzene	EPA 8270D	Carbonaceous BOD	SM 5210B-01,-11
		Chemical Oxygen Demand	SM 5220D-97,-11

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Fuel Oxygenates		Low Level Polynuclear Aromatics	
Di-isopropyl ether	EPA 8260C	Acenaphthylene Low Level	EPA 8270D SIM
Ethanol	EPA 8260C	Anthracene Low Level	EPA 8270D SIM
	EPA 8015D	Benzo(a)anthracene Low Level	EPA 8270D SIM
Methyl tert-butyl ether	EPA 8260C	Benzo(a)pyrene Low Level	EPA 8270D SIM
tert-amyl alcohol	EPA 8260C	Benzo(b)fluoranthene Low Level	EPA 8270D SIM
tert-amyl methyl ether (TAME)	EPA 8260C	Benzo(g,h,i)perylene Low Level	EPA 8270D SIM
tert-butyl alcohol	EPA 8260C	Benzo(k)fluoranthene Low Level	EPA 8270D SIM
tert-butyl ethyl ether (ETBE)	EPA 8260C	Chrysene Low Level	EPA 8270D SIM
Haloethers		Dibenzo(a,h)anthracene Low Level	EPA 8270D SIM
2,2'-Oxybis(1-chloropropane)	EPA 625	Fluoranthene Low Level	EPA 8270D SIM
z,z exysic( emeropropane)	EPA 8270D	Fluorene Low Level	EPA 8270D SIM
4-Bromophenylphenyl ether	EPA 625	Indeno(1,2,3-cd)pyrene Low Level	EPA 8270D SIM
· Drainspilotty, priority, office	EPA 8270D	Naphthalene Low Level	EPA 8270D SIM
4-Chlorophenylphenyl ether	EPA 625	Phenanthrene Low Level	EPA 8270D SIM
,	EPA 8270D	Pyrene Low Level	EPA 8270D SIM
Bis(2-chloroethoxy)methane	EPA 625	Metals I	
	EPA 8270D	Barium, Total	EPA 200.7 Rev. 4.4
Bis(2-chloroethyl)ether	EPA 625		EPA 6010C
	EPA 8270D	Cadmium, Total	EPA 200.7 Rev. 4.4
Low Level Halocarbons			EPA 6010C
1,2-Dibromo-3-chloropropane, Low Level	EPA 8011		EPA 7010
1,2-Dibromoethane, Low Level	EPA 8011		SM 3113B-04
·	217.0011	Calcium, Total	EPA 200.7 Rev. 4.4
Low Level Polynuclear Aromatics			EPA 6010C
Acenaphthene Low Level	EPA 8270D SIM	Chromium, Total	EPA 200.7 Rev. 4.4

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

NY Lab ld No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Metals i		Metals II	
Chromium, Total	EPA 6010C	Aluminum, Total	EPA 200.7 Rev. 4.4
Copper, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C	Antimony, Total	EPA 200.7 Rev. 4.4
Iron, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C		EPA 7010
Lead, Total	EPA 200.7 Rev. 4.4		SM 3113B-04
	EPA 6010C	Arsenic, Total	EPA 200.7 Rev. 4.4
	EPA 7010		EPA 6010C
	SM 3113B-04		EPA 7010
Magnesium, Total	EPA 200.7 Rev. 4.4		SM 3113B-04
	EPA 6010C	Beryllium, Total	EPA 200.7 Rev. 4.4
Manganese, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C	Chromium VI	EPA 7196A
Nickel, Total	EPA 200.7 Rev. 4.4		SM 3500-Cr B-09,-11
	EPA 6010C	Mercury, Total	EPA 245.1 Rev. 3.0
Potassium, Total	EPA 200.7 Rev. 4.4		EPA 7470A
	EPA 6010C	Selenium, Total	EPA 200.7 Rev. 4.4
Silver, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C		EPA 7010
	EPA 7010		SM 3113B-04
	SM 3113B-04	Vanadium, Total	EPA 200.7 Rev. 4.4
Sodium, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C	Zinc, Total	EPA 200.7 Rev. 4.4
Strontium, Total	EPA 200.7 Rev. 4.4		EPA 6010C
	EPA 6010C		

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Metals III		Miscellaneous	
Cobalt, Total	EPA 200.7 Rev. 4.4	Boron, Total	EPA 6010C
	EPA 6010C	Bromide	EPA 300.0 Rev. 2.1
Gold, Total	EPA 200.7 Rev. 4.4	Color	SM 2120B-01,-11
Molybdenum, Total	EPA 200.7 Rev. 4.4	Cyanide, Total	EPA 335.4 Rev. 1.0
	EPA 6010C		EPA 9012B
Thallium, Total	EPA 200.7 Rev. 4.4	Formaldehyde	EPA 8315A
	EPA 6010C	Oil and Grease Total Recoverable (HEM)	EPA 1664A
	EPA 7010		EPA 1664B
	SM 3113B-04		EPA 9070A (Solvent:Hexane)
	EPA 200.9 Rev. 2.2	Organic Carbon, Total	SM 5310C-00,-11
Tin, Total	EPA 200.7 Rev. 4.4	Phenois	EPA 420.4 Rev. 1.0
	EPA 6010C	Specific Conductance	SM 2510B-97,-11
Titanium, Total	EPA 200.7 Rev. 4.4	Sulfide (as S)	SM 4500-S2- D-00,-11
	EPA 6010C	Surfactant (MBAS)	SM 5540C-00,-11
Mineral		Total Petroleum Hydrocarbons	EPA 1664A
Acidity	SM 2310B-97,-11	Turbidity	SM 2130 B-01,-11
Alkalinity	SM 2320B-97,-11	Nitroaromatics and Isophorone	
Calcium Hardness	EPA 200.7 Rev. 4.4	2,4-Dinitrotoluene	EPA 625
Chloride	EPA 300.0 Rev. 2.1		EPA 8270D
	SM 4500-CI- E-97,-11	2,6-Dinitrotoluene	EPA 625
Hardness, Total	EPA 200.7 Rev. 4.4		EPA 8270D
Sulfate (as SO4)	EPA 300.0 Rev. 2.1	Isophorone	EPA 625
	SM 4500-SO4 D-97,-11		EPA 8270D
Miscellaneous		Nitrobenzene	EPA 625
Boron, Total	EPA 200.7 Rev. 4.4		EPA 8270D

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Nitrosoamines		Organophosphate Pesticides	
N-Nitrosodimethylamine	EPA 625	Malathion	EPA 8141B
	EPA 8270D	Parathion ethyl	EPA 8270D
N-Nitrosodi-n-propylamine	EPA 625	Simazine	EPA 8141B
	EPA 8270D	Petroleum Hydrocarbons	
N-Nitrosodiphenylamine	EPA 625	Diesel Range Organics	EPA 8015D
	EPA 8270D	Gasoline Range Organics	EPA 8015D
Nutrient			LFA 60 13D
Ammonia (as N)	EPA 350.1 Rev. 2.0	Phthalate Esters	
Kjeldahl Nitrogen, Total	EPA 351.1 Rev. 1978	Benzyl butyl phthalate	EPA 625
Nitrate (as N)	EPA 353.2 Rev. 2.0		EPA 8270D
,	EPA 300.0 Rev. 2.1	Bis(2-ethylhexyl) phthalate	EPA 625
Nitrate-Nitrite (as N)	EPA 353.2 Rev. 2.0		EPA 8270D
	EPA 300.0 Rev. 2.1	Diethyl phthalate	EPA 625
Nitrite (as N)	EPA 353.2 Rev. 2.0		EPA 8270D
,	EPA 300.0 Rev. 2.1	Dimethyl phthalate	EPA 625
Orthophosphate (as P)	SM 4500-P F-99,-11		EPA 8270D
,	SM 4500-P E-99,-11	Di-n-butyl phthalate	EPA 625
Phosphorus, Total	EPA 200.7 Rev. 4.4		EPA 8270D
•	SM 4500-P E-99,-11	Di-n-octyl phthalate	EPA 625
Organophophoto Besticidae	·		EPA 8270D
Organophosphate Pesticides		Polychlorinated Biphenyls	
Atrazine	EPA 8141B	PCB-1016	EPA 8082A
	EPA 8270D		EPA 608
Azinphos methyl	EPA 8141B	PCB-1221	EPA 8082A
Diazinon	EPA 8141B		EPA 608
Disulfoton	EPA 8141B		

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Polychlorinated Biphenyls		Polynuclear Aromatics	
PCB-1232	EPA 8082A	Benzo(ghi)perylene	EPA 625
	EPA 608		EPA 8270D
PCB-1242	EPA 8082A	Benzo(k)fluoranthene	EPA 625
	EPA 608		EPA 8270D
PCB-1248	EPA 8082A	Chrysene	EPA 625
	EPA 608		EPA 8270D
PCB-1254	EPA 8082A	Dibenzo(a,h)anthracene	EPA 625
	EPA 608		EPA 8270D
PCB-1260	EPA 8082A	Fluoranthene	EPA 625
	EPA 608		EPA 8270D
PCB-1262	EPA 8082A	Fluorene	EPA 625
PCB-1268	EPA 8082A		EPA 8270D
Polynuclear Aromatics		Indeno(1,2,3-cd)pyrene	EPA 625
Acenaphthene	EPA 625		EPA 8270D
, ioonaphiliona	EPA 8270D	Naphthalene	EPA 625
Acenaphthylene	EPA 625		EPA 8270D
, is a second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product of the second product	EPA 8270D	Phenanthrene	EPA 625
Anthracene	EPA 625		EPA 8270D
	EPA 8270D	Pyrene	EPA 625
Benzo(a)anthracene	EPA 625		EPA 8270D
<b>( - ) -</b>	EPA 8270D	<b>Priority Pollutant Phenols</b>	
Benzo(a)pyrene	EPA 625	2,3,4,6 Tetrachlorophenol	EPA 8270D
	EPA 8270D	2,4,5-Trichlorophenol	EPA 625
Benzo(b)fluoranthene	EPA 625	·	EPA 8270D
	EPA 8270D	2,4,6-Trichlorophenol	EPA 625

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Priority Pollutant Phenols		Priority Pollutant Phenols	
2,4,6-Trichlorophenol	EPA 8270D	Phenol	EPA 625
2,4-Dichlorophenol	EPA 625		EPA 8270D
	EPA 8270D	Residue	
2,4-Dimethylphenol	EPA 625	Settleable Solids	SM 2540 F-97,-11
	EPA 8270D	Solids, Total	SM 2540 B-97,-11
2,4-Dinitrophenol	EPA 625	Solids, Total Dissolved	SM 2540 C-97,-11
	EPA 8270D	Solids, Total Suspended	SM 2540 D-97,-11
2-Chlorophenol	EPA 625	Solids, Volatile	SM 2540 E-97,-11
	EPA 8270D	,	SW 2540 E-57,-11
2-Methyl-4,6-dinitrophenol	EPA 625	Semi-Volatile Organics	
	EPA 8270D	1,1'-Biphenyl	EPA 8270D
2-Methylphenol	EPA 625	1,2-Dichlorobenzene, Semi-volatile	EPA 8270D
	EPA 8270D	1,3-Dichlorobenzene, Semi-volatile	EPA 8270D
2-Nitrophenol	EPA 625	1,4-Dichlorobenzene, Semi-volatile	EPA 8270D
	EPA 8270D	2-Methylnaphthalene	EPA 8270D
3-Methylphenol	EPA 8270D	Acetophenone	EPA 8270D
4-Chloro-3-methylphenol	EPA 625	alpha-Terpineol	EPA 625
	EPA 8270D	Benzaldehyde	EPA 8270D
4-Methylphenol	EPA 625	Benzoic Acid	EPA 8270D
	EPA 8270D	Benzyl alcohol	EPA 8270D
4-Nitrophenol	EPA 625	Caprolactam	EPA 8270D
	EPA 8270D	Dibenzofuran	EPA 8270D
Cresols, Total	EPA 625	Volatile Aromatics	
	EPA 8270D	1,2,4-Trichlorobenzene, Volatile	EPA 8260C
Pentachlorophenol	EPA 625	1,2,4-Trimethylbenzene	EPA 8260C
	EPA 8270D	,,,,	

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Volatile Aromatics		Volatile Aromatics	
1,2-Dichlorobenzene	EPA 8260C	Styrene	EPA 8260C
	EPA 624		EPA 624
1,3,5-Trimethylbenzene	EPA 8260C	tert-Butylbenzene	EPA 8260C
1,3-Dichlorobenzene	EPA 8260C	Toluene	EPA 8260C
	EPA 624		EPA 624
1,4-Dichlorobenzene	EPA 8260C	Total Xylenes	EPA 8260C
	EPA 624		EPA 624
2-Chlorotoluene	EPA 8260C	Volatile Halocarbons	
4-Chlorotoluene	EPA 8260C	1,1,1,2-Tetrachloroethane	EPA 8260C
Benzene	EPA 8260C	1,1,1-Trichloroethane	EPA 8260C
	EPA 624	i, i, i monorodnano	EPA 624
Bromobenzene	EPA 8260C	1,1,2,2-Tetrachloroethane	EPA 8260C
Chlorobenzene	EPA 8260C	1,1,2,2 10000000000000000000000000000000	EPA 624
	EPA 624	1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260C
Ethyl benzene	EPA 8260C	1,1,2-Trichloroethane	EPA 8260C
	EPA 624	., .,	EPA 624
Isopropylbenzene	EPA 8260C	1,1-Dichloroethane	EPA 8260C
m/p-Xylenes	EPA 8260C	,, -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EPA 624
	EPA 624	1,1-Dichloroethene	EPA 8260C
Naphthalene, Volatile	EPA 8260C	,,	EPA 624
n-Butylbenzene	EPA 8260C	1,1-Dichloropropene	EPA 8260C
n-Propylbenzene	EPA 8260C	1,2,3-Trichloropropane	EPA 8260C
o-Xylene	EPA 8260C	1,2-Dibromo-3-chloropropane	EPA 8260C
	EPA 624	1,2-Dibromoethane	EPA 8260C
p-Isopropyltoluene (P-Cymene)	EPA 8260C	1,2-Dichloroethane	EPA 8260C
sec-Butylbenzene	EPA 8260C	.,E Distriction and	2.7.02000

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER
All approved analytes are listed below:

Volatile Halocarbons		Volatile Halocarbons	
1,2-Dichloroethane	EPA 624	Dibromochloromethane	EPA 8260C
1,2-Dichloropropane	EPA 8260C		EPA 624
	EPA 624	Dibromomethane	EPA 8260C
1,3-Dichloropropane	EPA 8260C	Dichlorodifluoromethane	EPA 8260C
2,2-Dichloropropane	EPA 8260C		EPA 624
2-Chloroethylvinyl ether	EPA 8260C	Hexachlorobutadiene, Volatile	EPA 8260C
	EPA 624	Methyl iodide	EPA 8260C
Bromochloromethane	EPA 8260C	Methylene chloride	EPA 8260C
Bromodichloromethane	EPA 8260C		EPA 624
	EPA 624	Tetrachloroethene	EPA 8260C
Bromoform	EPA 8260C		EPA 624
	EPA 624	trans-1,2-Dichloroethene	EPA 8260C
Bromomethane	EPA 8260C		EPA 624
	EPA 624	trans-1,3-Dichloropropene	EPA 8260C
Carbon tetrachloride	EPA 8260C		EPA 624
	EPA 624	trans-1,4-Dichloro-2-butene	EPA 8260C
Chloroethane	EPA 8260C	Trichloroethene	EPA 8260C
	EPA 624		EPA 624
Chloroform	EPA 8260C	Trichlorofluoromethane	EPA 8260C
	EPA 624		EPA 624
Chloromethane	EPA 8260C	Vinyl chloride	EPA 8260C
	EPA 624		EPA 624
cis-1,2-Dichloroethene	EPA 8260C	Volatiles Organics	
	EPA 624	1,4-Dioxane	EPA 8260C
cis-1,3-Dichloropropene	EPA 8260C	2-Butanone (Methylethyl ketone)	EPA 8260C
	EPA 624	2 Datamono (Monty Joney Rotollo)	2.7.02000

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER

All approved analytes are listed below:

#### **Volatiles Organics**

2-Hexanone	EPA 8260C
4-Methyl-2-Pentanone	EPA 8260C
Acetone	EPA 8260C
Carbon Disulfide	EPA 8260C
Cyclohexane	EPA 8260C
Di-ethyl ether	EPA 8260C
Ethylene Glycol	EPA 8015D
Isobutyl alcohol	EPA 8015D
Methyl acetate	EPA 8260C
Methyl cyclohexane	EPA 8260C
Vinyl acetate	EPA 8260C

#### **Sample Preparation Methods**

SM 4500-P B(5)-99,-11

**EPA 5030C** 

SM 4500-CN B or C-99,-11

EPA 3010A EPA 3005A EPA 3510C EPA 3520C EPA 3020A

SM 4500-NH3 B-97,-11

**EPA 9010C** 

Serial No.: 54725





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES NON POTABLE WATER All approved subcategories and/or analytes are listed below:

Volatile Halocarbons

Chloroethane

**EPA 8260C** 

Serial No.: 54214



Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Acrylates Chlorinated Hydrocarbon Pe		Chlorinated Hydrocarbon Pesticides	
Acrolein (Propenal)	EPA 8260C	alpha-BHC	EPA 8081B
Acrylonitrile	EPA 8260C	alpha-Chlordane	EPA 8081B
Amines		Atrazine	EPA 8270D
1,2-Diphenylhydrazine	EPA 8270D	beta-BHC	EPA 8081B
2-Nitroaniline	EPA 8270D	Chlordane Total	EPA 8081B
3-Nitroaniline	EPA 8270D	delta-BHC	EPA 8081B
4-Chloroaniline	EPA 8270D	Dieldrin	EPA 8081B
4-Nitroaniline	EPA 8270D	Endosulfan I	EPA 8081B
Aniline	EPA 8270D	Endosulfan II	EPA 8081B
Carbazole	EPA 8270D	Endosulfan sulfate	EPA 8081B
Dansidia		Endrin	EPA 8081B
Benzidines		Endrin aldehyde	EPA 8081B
3,3'-Dichlorobenzidine	EPA 8270D	Endrin Ketone	EPA 8081B
Benzidine	EPA 8270D	gamma-Chlordane	EPA 8081B
Characteristic Testing		Heptachlor	EPA 8081B
Corrosivity	EPA 9045D	Heptachlor epoxide	EPA 8081B
Free Liquids	EPA 9095B	Lindane	EPA 8081B
Ignitability	EPA 1010A	Methoxychlor	EPA 8081B
Synthetic Precipitation Leaching Proc.	EPA 1312	Mirex	EPA 8081B
TCLP	EPA 1311	Pentachloronitrobenzene	EPA 8270D
Chlorinated Wydrosophon Bostisidos		Simazine	EPA 8141B
Chlorinated Hydrocarbon Pesticides		Toxaphene	EPA 8081B
4,4'-DDD	EPA 8081B	Chlorinated Hydrocarbons	
4,4'-DDE	EPA 8081B	•	
4,4'-DDT	EPA 8081B	1,2,3-Trichlorobenzene	EPA 8260C
Aldrin	EPA 8081B	1,2,4,5-Tetrachlorobenzene	EPA 8270D

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Chlorinated Hydrocarbons		Low Level Polynuclear Aromatic Hydr	Low Level Polynuclear Aromatic Hydrocarbons	
1,2,4-Trichlorobenzene	EPA 8270D	Acenaphthene Low Level	EPA 8270D SIM	
2-Chloronaphthalene	EPA 8270D	Acenaphthylene Low Level	EPA 8270D SIM	
Hexachlorobenzene	EPA 8270D	Anthracene Low Level	EPA 8270D SIM	
Hexachlorobutadiene	EPA 8270D	Benzo(a)anthracene Low Level	EPA 8270D SIM	
Hexachlorocyclopentadiene	EPA 8270D	Benzo(a)pyrene Low Level	EPA 8270D SIM	
Hexachloroethane	EPA 8270D	Benzo(b)fluoranthene Low Level	EPA 8270D SIM	
Chlorophenoxy Acid Pesticides		Benzo(g,h,i)perylene Low Level	EPA 8270D SIM	
2,4,5-T	EPA 8151A	Benzo(k)fluoranthene Low Level	EPA 8270D SIM	
2,4,5-TP (Silvex)	EPA 8151A	Chrysene Low Level	EPA 8270D SIM	
2,4-D	EPA 8151A	Dibenzo(a,h)anthracene Low Level	EPA 8270D SIM	
2,4-DB	EPA 8151A	Fluoranthene Low Level	EPA 8270D SIM	
Dalapon	EPA 8151A	Fluorene Low Level	EPA 8270D SIM	
Dicamba	EPA 8151A	Indeno(1,2,3-cd)pyrene Low Level	EPA 8270D SIM	
Dichloroprop	EPA 8151A	Naphthalene Low Level	EPA 8270D SIM	
Dinoseb	EPA 8151A	Phenanthrene Low Level	EPA 8270D SIM	
MCPA	EPA 8151A	Pyrene Low Level	EPA 8270D SIM	
МСРР	EPA 8151A	Metals I		
Pentachlorophenol	EPA 8151A	Barium, Total	EPA 6010C	
Haloethers		Cadmium, Total	EPA 6010C	
2,2'-Oxybis(1-chloropropane)	EPA 8270D	Calcium, Total	EPA 6010C	
4-Bromophenylphenyl ether	EPA 8270D	Chromium, Total	EPA 6010C	
4-Chlorophenylphenyl ether	EPA 8270D	Copper, Total	EPA 6010C	
Bis(2-chloroethoxy)methane	EPA 8270D	Iron, Total	EPA 6010C	
Bis(2-chloroethyl)ether	EPA 8270D	Lead, Total	EPA 6010C	
Dista Chiloropathyrjothiol	LI A OZIOD	Magnesium, Total	EPA 6010C	

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Metals I		Minerals	
Manganese, Total	EPA 6010C	Bromide	EPA 9056A
Nickel, Total	EPA 6010C	Chloride	EPA 9056A
Potassium, Total	EPA 6010C	Fluoride, Total	EPA 9056A
Silver, Total	EPA 6010C	Sulfate (as SO4)	EPA 9056A
Sodium, Total	EPA 6010C	Miscellaneous	
Strontium, Total	EPA 6010C	Boron, Total	EPA 6010C
Metals II		Cyanide, Total	EPA 9012B
Aluminum, Total	EPA 6010C	Formaldehyde	EPA 8315A
Antimony, Total	EPA 6010C	Organic Carbon, Total	Lloyd Kahn Method
	EPA 7010		EPA 9060A
Arsenic, Total	EPA 6010C	Phenois	EPA 9065
Beryllium, Total	EPA 6010C		EPA 9066
Chromium VI	EPA 7196A	Specific Conductance	EPA 9050A
Mercury, Total	EPA 7471B	Sulfide (as S)	EPA 9034
Selenium, Total	EPA 6010C	Nitroaromatics and Isophorone	
Vanadium, Total	EPA 6010C	2,4-Dinitrotoluene	EPA 8270D
Zinc, Total	EPA 6010C	2,6-Dinitrotoluene	EPA 8270D
Metals III		Isophorone	EPA 8270D
Cobalt, Total	EPA 6010C	Nitrobenzene	EPA 8270D
Molybdenum, Total	EPA 6010C	Pyridine	EPA 8270D
Thallium, Total	EPA 6010C	Nitrosoamines	
	EPA 7010		ED1 0070D
Tin, Total	EPA 6010C	N-Nitrosodimethylamine	EPA 8270D
Titanium, Total	EPA 6010C	N-Nitrosodi-n-propylamine	EPA 8270D
·		N-Nitrosodiphenylamine	EPA 8270D

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

> is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Nutrients		Polychlorinated Biphenyls	
Nitrate (as N)	EPA 9056A	PCB-1248	EPA 8082A
Nitrite (as N)	EPA 9056A	PCB-1254	EPA 8082A
Organophosphate Pesticides		PCB-1260	EPA 8082A
Azinphos methyl	EPA 8141B	PCB-1262	EPA 8082A
Diazinon	EPA 8141B	PCB-1268	EPA 8082A
Disulfoton	EPA 8141B	PCBs in Oil	EPA-600/4-81-045
Malathion	EPA 8141B	Polynuclear Aromatic Hydrocarbons	
Parathion ethyl	EPA 8270D	Acenaphthene	EPA 8270D
Petroleum Hydrocarbons		Acenaphthylene	EPA 8270D
Diesel Range Organics	EPA 8015D	Anthracene	EPA 8270D
Gasoline Range Organics	EPA 8015D	Benzo(a)anthracene	EPA 8270D
Oil and Grease Total Recoverable (HEM)		Benzo(a)pyrene	EPA 8270D
	Zi / voor /Z (conona loxallo)	Benzo(b)fluoranthene	EPA 8270D
Phthalate Esters		Benzo(ghi)perylene	EPA 8270D
Benzyl butyl phthalate	EPA 8270D	Benzo(k)fluoranthene	EPA 8270D
Bis(2-ethylhexyl) phthalate	EPA 8270D	Chrysene	EPA 8270D
Diethyl phthalate	EPA 8270D	Dibenzo(a,h)anthracene	EPA 8270D
Dimethyl phthalate	EPA 8270D	Fluoranthene	EPA 8270D
Di-n-butyl phthalate	EPA 8270D	Fluorene	EPA 8270D
Di-n-octyl phthalate	EPA 8270D	Indeno(1,2,3-cd)pyrene	EPA 8270D
Polychlorinated Biphenyls		Naphthalene	EPA 8270D
PCB-1016	EPA 8082A	Phenanthrene	EPA 8270D
PCB-1221	EPA 8082A	Pyrene	EPA 8270D
PCB-1232	EPA 8082A	Priority Pollutant PhenoIs	
PCB-1242	EPA 8082A	2,3,4,6 Tetrachlorophenol	EPA 8270D

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

NY Lab Id No: 11301

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Priority Pollutant PhenoIs		Semi-Volatile Organics	
2,4,5-Trichlorophenol	EPA 8270D	Dibenzofuran	EPA 8270D
2,4,6-Trichlorophenol	EPA 8270D	Volatile Aromatics	
2,4-Dichlorophenol	EPA 8270D	1,2,4-Trichlorobenzene, Volatile	EPA 8260C
2,4-Dimethylphenol	EPA 8270D	1,2,4-Trimethylbenzene	EPA 8260C
2,4-Dinitrophenol	EPA 8270D	1,2-Dichlorobenzene	EPA 8260C
2-Chlorophenol	EPA 8270D	1,3,5-Trimethylbenzene	EPA 8260C
2-Methyl-4,6-dinitrophenol	EPA 8270D	1,3-Dichlorobenzene	EPA 8260C
2-Methylphenol	EPA 8270D	1,4-Dichlorobenzene	EPA 8260C
2-Nitrophenol	EPA 8270D	2-Chlorotoluene	EPA 8260C
3-Methylphenol	EPA 8270D	4-Chlorotoluene	EPA 8260C
4-Chloro-3-methylphenol	EPA 8270D	Benzene	EPA 8260C
4-Methylphenol	EPA 8270D	Bromobenzene	EPA 8260C
4-Nitrophenol	EPA 8270D	Chlorobenzene	EPA 8260C
Pentachlorophenol	EPA 8270D	Ethyl benzene	EPA 8260C
Phenol	EPA 8270D	Isopropylbenzene	EPA 8260C
Semi-Volatile Organics		m/p-Xylenes	EPA 8260C
1,1'-Biphenyl	EPA 8270D	Naphthalene, Volatile	EPA 8260C
1,2-Dichlorobenzene, Semi-volatile	EPA 8270D	n-Butylbenzene	EPA 8260C
1,3-Dichlorobenzene, Semi-volatile	EPA 8270D	n-Propylbenzene	EPA 8260C
1,4-Dichlorobenzene, Semi-volatile	EPA 8270D	• • • • • • • • • • • • • • • • • • • •	EPA 8260C
2-Methylnaphthalene	EPA 8270D	o-Xylene	
Acetophenone	EPA 8270D	p-Isopropyltoluene (P-Cymene)	EPA 8260C EPA 8260C
•		sec-Butylbenzene	
Benzaldehyde Benzyl alcohol	EPA 8270D	Styrene	EPA 8260C
•	EPA 8270D	tert-Butylbenzene	EPA 8260C
Caprolactam	EPA 8270D	Toluene	EPA 8260C

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

Volatile Aromatics		Volatile Halocarbons	
Total Xylenes	EPA 8260C	cis-1,2-Dichloroethene E	PA 8260C
Volatile Halocarbons		cis-1,3-Dichloropropene E	PA 8260C
1,1,1,2-Tetrachloroethane	EPA 8260C	Dibromochloromethane	PA 8260C
1.1.1-Trichloroethane	EPA 8260C	Dibromomethane	PA 8260C
1,1,2,2-Tetrachloroethane	EPA 8260C	Dichlorodifluoromethane E	PA 8260C
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA 8260C	Hexachlorobutadiene, Volatile E	PA 8260C
1.1.2-Trichloroethane	EPA 8260C	Methylene chloride E	PA 8260C
1,1-Dichloroethane	EPA 8260C	Tetrachloroethene	PA 8260C
1,1-Dichloroethene	EPA 8260C	trans-1,2-Dichloroethene E	PA 8260C
1,1-Dichloropropene	EPA 8260C	trans-1,3-Dichloropropene E	PA 8260C
1,2,3-Trichloropropane	EPA 8260C	trans-1,4-Dichloro-2-butene E	PA 8260C
1,2-Dibromo-3-chloropropane	EPA 8260C	Trichloroethene	PA 8260C
1,2-Dibromoethane	EPA 8260C	Trichlorofluoromethane E	PA 8260C
1,2-Dichloroethane	EPA 8260C	Vinyl chloride E	PA 8260C
1,2-Dichloropropane	EPA 8260C	Volatile Organics	
1,3-Dichloropropane	EPA 8260C	•	PA 8260C
2,2-Dichloropropane	EPA 8260C	• • • • • • • • • • • • • • • • • • • •	PA 8260C
2,2-Dichloroproparie  Bromochloromethane			
	EPA 8260C		PA 8260C
Bromodichloromethane	EPA 8260C	· · · · · · · · · · · · · · · · · · ·	PA 8260C
Bromoform	EPA 8260C		PA 8260C
Bromomethane	EPA 8260C		PA 8260C
Carbon tetrachloride	EPA 8260C	Cyclohexane	PA 8260C
Chloroethane	EPA 8260C	Ethylene Glycol E	PA 8260C
Chloroform	EPA 8260C	E	PA 8015D
Chloromethane	EPA 8260C	Methyl acetate E	PA 8260C

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016 Revised April 14, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved analytes are listed below:

#### **Volatile Organics**

Methyl cyclohexane	EPA 8260C
Methyl tert-butyl ether	EPA 8260C
tert-butyl alcohol	EPA 8260C

#### **Sample Preparation Methods**

EPA 5035A-L EPA 5035A-H EPA 3580A EPA 9030B EPA 3050B EPA 3550C EPA 3540C EPA 3545A EPA 3051A EPA 5021A EPA 3060A EPA 9010C

Serial No.: 54726





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### **CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE**

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory for the category ENVIRONMENTAL ANALYSES SOLID AND HAZARDOUS WASTE All approved subcategories and/or analytes are listed below:

#### **Miscellaneous**

Lead in Dust Wipes

**EPA 6010C** 

Lead in Paint

**EPA 6010C** 

**Sample Preparation Methods** 

**EPA 3050B** 

**EPA 3051A** 

Serial No.: 54216



Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS
All approved analytes are listed below:

Acrylates		Purgeable Aromatics	
Acrylonitrile	EPA TO-15	1,3-Dichlorobenzene	EPA TO-15
Methyl methacrylate	EPA TO-15	1,4-Dichlorobenzene	EPA TO-14A
Chlorinated Hydrocarbons			EPA TO-15
1,2,4-Trichlorobenzene	EPA TO-14A	2-Chlorotoluene	EPA TO-15
,,=,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	EPA TO-15	Benzene	EPA TO-14A
Hexachlorobutadiene	EPA TO-14A		EPA TO-15
	EPA TO-15	Chlorobenzene	EPA TO-14A
Hexachloroethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Ethyl benzene	EPA TO-14A
Metals I			EPA TO-15
		Isopropylbenzene	EPA TO-15
Lead, Total	EPA 7010	m/p-Xylenes	EPA TO-15
Polychlorinated Biphenyls		o-Xylene	EPA TO-15
PCBs and Aroclors	EPA TO-10A	Styrene	EPA TO-14A
Polynuclear Aromatics			EPA TO-15
•	ED) TO 45	Toluene	EPA TO-14A
Naphthalene	EPA TO-15		EPA TO-15
Purgeable Aromatics		Total Xylenes	EPA TO-14A
1,2,4-Trimethylbenzene	EPA TO-14A		EPA TO-15
	EPA TO-15	Purgeable Halocarbons	
1,2-Dichlorobenzene	EPA TO-14A	1,1,1-Trichloroethane	EPA TO-14A
	EPA TO-15	i, i, i ilidilorodilalio	EPA TO-15
1,3,5-Trimethylbenzene	EPA TO-14A	1,1,2,2-Tetrachloroethane	EPA TO-14A
	EPA TO-15	i, i,z,z-ieuachioroeulalie	EPA TO-14A
1,3-Dichlorobenzene	EPA TO-14A	1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA TO-14A

Serial No.: 54217





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER
PHOENIX ENVIRONMENTAL LABS
587 EAST MIDDLE TURNPIKE
MANCHESTER, CT 06040

NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS
All approved analytes are listed below:

Purgeable Halocarbons		Purgeable Halocarbons	
1,1,2-Trichloro-1,2,2-Trifluoroethane	EPA TO-15	Chloroform	EPA TO-15
1,1,2-Trichloroethane	EPA TO-14A	Chloromethane	EPA TO-14A
	EPA TO-15		<b>EPA</b> TO-15
1,1-Dichloroethane	EPA TO-14A	cis-1,2-Dichloroethene	EPA TO-14A
	EPA TO-15		EPA TO-15
1,1-Dichloroethene	EPA TO-14A	cis-1,3-Dichloropropene	EPA TO-14A
	EPA TO-15		EPA TO-15
1,2-Dibromo-3-chloropropane	EPA TO-14A	Dibromochloromethane	EPA TO-15
	EPA TO-15	Dichlorodifluoromethane	EPA TO-14A
1,2-Dibromoethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Methylene chloride	EPA TO-14A
1,2-Dichloroethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Tetrachloroethene	EPA TO-14A
1,2-Dichloropropane	EPA TO-14A		EPA TO-15
	EPA TO-15	trans-1,2-Dichloroethene	EPA TO-14A
3-Chloropropene (Allyl chloride)	EPA TO-15		EPA TO-15
Bromodichloromethane	EPA TO-14A	trans-1,3-Dichloropropene	EPA TO-14A
	EPA TO-15		EPA TO-15
Bromoform	EPA TO-15	Trichloroethene	EPA TO-14A
Bromomethane	EPA TO-14A		EPA TO-15
	EPA TO-15	Trichlorofluoromethane	EPA TO-14A
Carbon tetrachloride	EPA TO-14A		EPA TO-15
	EPA TO-15	Vinyl bromide	EPA TO-15
Chloroethane	EPA TO-14A	Vinyl chloride	EPA TO-14A
	EPA TO-15		EPA TO-15
Chloroform	EPA TO-14A		

Serial No.: 54217





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MS. PHYLLIS SHILLER PHOENIX ENVIRONMENTAL LABS 587 EAST MIDDLE TURNPIKE MANCHESTER, CT 06040 NY Lab Id No: 11301

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES AIR AND EMISSIONS
All approved analytes are listed below:

#### **Volatile Chlorinated Organics**

Benzyl chloride	EPA TO-14A
	EPA TO-15
Volatile Organics	
1,2-Dichlorotetrafluoroethane	EPA TO-14A
	EPA TO-15
1,3-Butadiene	EPA TO-14A
	EPA TO-15
1,4-Dioxane	EPA TO-15
2,2,4-Trimethylpentane	EPA TO-15
2-Butanone (Methylethyl ketone)	EPA TO-15
4-Methyl-2-Pentanone	EPA TO-15
Acetone	EPA TO-15
Carbon Disulfide	EPA TO-15
Cyclohexane	EPA TO-15
Hexane	EPA TO-15
Isopropanol	EPA TO-15
Methyl tert-butyl ether	EPA TO-15
n-Heptane	EPA TO-15
tert-butyl alcohol	EPA TO-15

Serial No.: 54217





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Fuel Additives		Metals II	
Methyl tert-butyl ether	EPA 524.2	Antimony, Total	EPA 200.8 Rev. 5.4
Naphthalene	EPA 524.2	Beryllium, Total	EPA 200.7 Rev. 4.4
Metals I			EPA 200.8 Rev. 5.4
Arsenic, Total	EPA 200.8 Rev. 5.4	Molybdenum, Total	EPA 200.8 Rev. 5.4
Barium, Total	EPA 200.7 Rev. 4.4	Nickel, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4		EPA 200.8 Rev. 5.4
Cadmium, Total	EPA 200.7 Rev. 4.4	Thallium, Total	EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Vanadium, Total	EPA 200.7 Rev. 4.4
Chromium, Total	EPA 200.7 Rev. 4.4		EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Metals III	
Copper, Total	EPA 200.7 Rev. 4.4	Calcium, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4	Magnesium, Total	EPA 200.7 Rev. 4.4
Iron, Total	EPA 200.7 Rev. 4.4	Potassium, Total	EPA 200.7 Rev. 4.4
Lead, Total	EPA 200.8 Rev. 5.4	Sodium, Total	EPA 200.7 Rev. 4.4
Manganese, Total	EPA 200.7 Rev. 4.4	Non-Metals	
	EPA 200.8 Rev. 5.4	Alkalinity	SM 18-22 2320B (-97)
Mercury, Total	EPA 245.1 Rev. 3.0	Calcium Hardness	EPA 200.7 Rev. 4.4
Selenium, Total	EPA 200.8 Rev. 5.4	Chloride	EPA 300.0 Rev. 2.1
Silver, Total	EPA 200.7 Rev. 4.4	Color	SM 18-22 2120B (-01)
	EPA 200.8 Rev. 5.4	Nitrate (as N)	EPA 300.0 Rev. 2.1
Zinc, Total	EPA 200.7 Rev. 4.4	Nitrite (as N)	EPA 300.0 Rev. 2.1
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	EPA 200.8 Rev. 5.4	Orthophosphate (as P)	EPA 300.0 Rev. 2.1
Metals II			SM 18-22 4500-P E (-99)
Aluminum, Total	EPA 200.7 Rev. 4.4	Solids, Total Dissolved	SM 18-22 2540C (-97)
	EPA 200.8 Rev. 5.4	Specific Conductance	EPA 120.1 Rev. 1982

Serial No.: 54046





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Non-Metals		Volatile Aromatics	
Sulfate (as SO4)	EPA 300.0 Rev. 2.1	sec-Butylbenzene	EPA 524.2
Trihalomethanes		Styrene	EPA 524.2
Bromodichloromethane	EPA 524.2	tert-Butylbenzene	EPA 524.2
Bromoform	EPA 524.2	Toluene	EPA 524.2
Chloroform	EPA 524.2	Total Xylenes	EPA 524.2
Dibromochloromethane	EPA 524.2	Volatile Halocarbons	
Volatile Aromatics		1,1,1,2-Tetrachloroethane	EPA 524.2
1,2,3-Trichlorobenzene	EPA 524.2	1,1,1-Trichloroethane	EPA 524.2
1,2,4-Trichlorobenzene	EPA 524.2	1,1,2,2-Tetrachloroethane	EPA 524.2
1,2,4-Trimethylbenzene	EPA 524.2	1,1,2-Trichloroethane	EPA 524.2
1,2-Dichlorobenzene	EPA 524.2	1,1-Dichloroethane	EPA 524.2
1,3,5-Trimethylbenzene	EPA 524.2	1,1-Dichloroethene	EPA 524.2
1,3-Dichlorobenzene	EPA 524.2	1,1-Dichloropropene	EPA 524.2
1,4-Dichlorobenzene	EPA 524.2	1,2,3-Trichloropropane	EPA 524.2
- 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND CO	1,2-Dichloroethane	EPA 524.2
2-Chlorotoluene	EPA 524.2	1,2-Dichloropropane	EPA 524.2
4-Chlorotoluene	EPA 524.2	1,3-Dichloropropane	EPA 524.2
Benzene	EPA 524.2	2,2-Dichloropropane	EPA 524.2
Bromobenzene	EPA 524.2	Bromochloromethane	EPA 524.2
Chlorobenzene	EPA 524.2	Bromomethane	EPA 524.2
Ethyl benzene	EPA 524.2	Carbon tetrachloride	EPA 524.2
Hexachlorobutadiene	EPA 524.2	Chloroethane	
Isopropylbenzene	EPA 524.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EPA 524.2
n-Butylbenzene	EPA 524.2	Chloromethane	EPA 524.2
n-Propylbenzene	EPA 524.2	cis-1,2-Dichloroethene	EPA 524.2
p-Isopropyltoluene (P-Cymene)	EPA 524.2	cis-1,3-Dichloropropene	EPA 524.2

Serial No.: 54046





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER
All approved analytes are listed below:

#### Volatile Halocarbons

Dibromomethane	EPA 524.2
Dichlorodifluoromethane	EPA 524.2
Methylene chloride	EPA 524.2
Tetrachloroethene	EPA 524.2
trans-1,2-Dichloroethene	EPA 524.2
trans-1,3-Dichloropropene	EPA 524.2
Trichloroethene	EPA 524.2
Trichlorofluoromethane	EPA 524.2
Vinyl chloride	EPA 524.2

Serial No.: 54046





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Fuel Additives		Metals II	
Methyl tert-butyl ether	EPA 524.2	Antimony, Total	EPA 200.8 Rev. 5.4
Naphthalene	EPA 524.2	Beryllium, Total	EPA 200.7 Rev. 4.4
Metals I			EPA 200.8 Rev. 5.4
Arsenic, Total	EPA 200.8 Rev. 5.4	Molybdenum, Total	EPA 200.8 Rev. 5.4
Barium, Total	EPA 200.7 Rev. 4.4	Nickel, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4		EPA 200.8 Rev. 5.4
Cadmium, Total	EPA 200.7 Rev. 4.4	Thallium, Total	EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Vanadium, Total	EPA 200.7 Rev. 4.4
Chromium, Total	EPA 200.7 Rev. 4.4		EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Metals III	
Copper, Total	EPA 200.7 Rev. 4.4	Calcium, Total	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4	Magnesium, Total	EPA 200.7 Rev. 4.4
Iron, Total	EPA 200.7 Rev. 4.4	Potassium, Total	EPA 200.7 Rev. 4.4
Lead, Total	EPA 200.8 Rev. 5.4	Sodium, Total	EPA 200.7 Rev. 4.4
Manganese, Total	EPA 200.7 Rev. 4.4	Non-Metals	
	EPA 200.8 Rev. 5.4	Alkalinity	SM 18-22 2320B (-97)
Mercury, Total	EPA 245.1 Rev. 3.0	Calcium Hardness	EPA 200.7 Rev. 4.4
Selenium, Total	EPA 200.8 Rev. 5.4	Chloride	EPA 300.0 Rev. 2.1
Silver, Total	EPA 200.7 Rev. 4.4	Color	SM 18-22 2120B (-01)
	EPA 200.8 Rev. 5.4	Nitrate (as N)	EPA 300.0 Rev. 2.1
Zinc, Total	EPA 200.7 Rev. 4.4	Nitrite (as N)	EPA 300.0 Rev. 2.1
i de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	EPA 200.8 Rev. 5.4	Orthophosphate (as P)	EPA 300.0 Rev. 2.1
Metals II			SM 18-22 4500-P E (-99)
Aluminum, Total	EPA 200.7 Rev. 4.4	Solids, Total Dissolved	SM 18-22 2540C (-97)
	EPA 200.8 Rev. 5.4	Specific Conductance	EPA 120.1 Rev. 1982

Serial No.: 54046





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Non-Metals		Volatile Aromatics	
Sulfate (as SO4)	EPA 300.0 Rev. 2.1	sec-Butylbenzene	EPA 524.2
Trihalomethanes		Styrene	EPA 524.2
Bromodichloromethane	EPA 524.2	tert-Butylbenzene	EPA 524.2
Bromoform	EPA 524.2	Toluene	EPA 524.2
Chloroform	EPA 524.2	Total Xylenes	EPA 524.2
Dibromochloromethane	EPA 524.2	Volatile Halocarbons	
Volatile Aromatics		1,1,1,2-Tetrachloroethane	EPA 524.2
1,2,3-Trichlorobenzene	EPA 524.2	1,1,1-Trichloroethane	EPA 524.2
1,2,4-Trichlorobenzene	EPA 524.2	1,1,2,2-Tetrachloroethane	EPA 524.2
1,2,4-Trimethylbenzene	EPA 524.2	1,1,2-Trichloroethane	EPA 524.2
1,2-Dichlorobenzene	EPA 524.2	1,1-Dichloroethane	EPA 524.2
1,3,5-Trimethylbenzene	EPA 524.2	1,1-Dichloroethene	EPA 524.2
1,3-Dichlorobenzene	EPA 524.2	1,1-Dichloropropene	EPA 524.2
1,4-Dichlorobenzene	EPA 524.2	1,2,3-Trichloropropane	EPA 524.2
- 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND COMMENT AND CO	1,2-Dichloroethane	EPA 524.2
2-Chlorotoluene	EPA 524.2	1,2-Dichloropropane	EPA 524.2
4-Chlorotoluene	EPA 524.2	1,3-Dichloropropane	EPA 524.2
Benzene	EPA 524.2	2,2-Dichloropropane	EPA 524.2
Bromobenzene	EPA 524.2	Bromochloromethane	EPA 524.2
Chlorobenzene	EPA 524.2	Bromomethane	EPA 524.2
Ethyl benzene	EPA 524.2	Carbon tetrachloride	EPA 524.2
Hexachlorobutadiene	EPA 524.2	Chloroethane	
Isopropylbenzene	EPA 524.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EPA 524.2
n-Butylbenzene	EPA 524.2	Chloromethane	EPA 524.2
n-Propylbenzene	EPA 524.2	cis-1,2-Dichloroethene	EPA 524.2
p-Isopropyltoluene (P-Cymene)	EPA 524.2	cis-1,3-Dichloropropene	EPA 524.2

Serial No.: 54046





Expires 12:01 AM April 01, 2017 Issued April 01, 2016

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

MR. ROBERT Q. BRADLEY YORK ANALYTICAL LABORATORIES INC 120 RESEARCH DRIVE STRATFORD, CT 06615

NY Lab Id No: 10854

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER
All approved analytes are listed below:

#### Volatile Halocarbons

Dibromomethane	EPA 524.2
Dichlorodifluoromethane	EPA 524.2
Methylene chloride	EPA 524.2
Tetrachloroethene	EPA 524.2
trans-1,2-Dichloroethene	EPA 524.2
trans-1,3-Dichloropropene	EPA 524.2
Trichloroethene	EPA 524.2
Trichlorofluoromethane	EPA 524.2
Vinyl chloride	EPA 524.2

Serial No.: 54046





Expires 12:01 AM April 01, 2016 Issued April 01, 2015

#### CERTIFICATE OF APPROVAL FOR LABORATORY SERVICE

Issued in accordance with and pursuant to section 502 Public Health Law of New York State

DR. PETER FRASCA
EMSL ANALYTICAL INC
200 ROUTE 130 NORTH
CINNAMINSON, NJ. 08077

Bacteriology

NY Lab Id No: 10872

is hereby APPROVED as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (2003) for the category ENVIRONMENTAL ANALYSES POTABLE WATER

All approved analytes are listed below:

Coliform, Total / E. coli (Qualitative)	SM 18-22 9223B (-97) (Colifert)	Manganese, Total		SM 18-22 3120B (-99)
Disinfection By-products				EPA 200.8 Rev. 5.4
Bromide	EPA 300.0 Rev. 2.1	Mercury, Total		EPA 245.1 Rev. 3.0
	2.1			SM 18-22 3112B (-99,-09)
Fuel Additives		Selenium, Total		EPA 200.8 Rev. 5.4
Methyl tert-butyl ether	EPA 524.2	Silver, Total		EPA 200.7 Rev. 4.4
Naphthalene	EPA 524.2			SM 18-22 3120B (-99)
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the			EPA 200.8 Rev. 5.4
Arsenic, Total	EPA 200.8 Rev. 5.4	Zinc, Total		EPA 200.7 Rev. 4.4
Barium, Total	EPA 200.7 Rev. 4.4			SM 18-22 3120B (-99)
	SM 18-22 3120B (-99)		1.2054	EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Metals II		
Cadmium, Total	EPA 200.7 Rev. 4.4	Aluminum, Total	교회 : : : : : : : : : : : : : : : : : : :	EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4			SM 18-22 3120B (-99)
Chromium, Total	EPA 200.7 Rev. 4.4	#dan W		EPA 200.8 Rev. 5.4
	SM 18-22 3120B (-99)	Antimony, Total	ist fil	EPA 200.8 Rev. 5.4
	EPA 200.8 Rev. 5.4	Beryllium, Total		EPA 200.7 Rev. 4.4
Copper, Total	EPA 200.7 Rev. 4.4		_ =	EPA 200.8 Rev. 5.4
	SM 18-19,21-22 3111B (-99)	Nickel, Total		EPA 200.7 Rev. 4.4
	EPA 200.8 Rev. 5.4		are en communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la communication de la	SM 18-22 3120B (-99)
Iron, Total	EPA 200.7 Rev. 4.4		iya d	EPA 200.8 Rev. 5.4
	SM 18-22 3120B (-99)	Thallium, Total	ar Sal <b>at</b> e 192	EPA 200.8 Rev. 5.4
Lead, Total	EPA 200.9 Rev. 2.2			
	EPA 200.8 Rev. 5,4	Metals III	laine e	
Manganese, Total	EPA 200.7 Rev. 4.4	Calcium, Total		EPA 200.7 Rev. 4.4
		Magnesium, Total		EPA 200.7 Rev. 4.4
				그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그

Serial No.: 52156

